#include using namespace std; //矩阵快速幂 typedef long long LL; const int MOD = 1e9 + 7; const int N = 110; LL n, k; //本题数据范围很大,用int直接wa哭了 //矩阵声明 struct JZ { LL m[N][N]; } A, res, base; //矩阵乘法 inline JZ mul(JZ A, JZ B) { JZ C; memset(C.m, 0, sizeof(C.m)); for (LL i = 0; i < n; i++) for (LL j = 0; j < n; j++) for (LL k = 0; k < n; k++) { C.m[i][j] += (A.m[i][k] % MOD) * (B.m[k][j] % MOD); C.m[i][j] %= MOD; } return C; } void qmi() { //将结果矩阵初始化为单位矩阵 memset(res.m, 0, sizeof res.m); for (int i = 0; i < n; i++) res.m[i][i] = 1; //其实就是把整数快速幂修改为矩阵快速幂 while (k) { //二进制快速幂 if (k & 1) res = mul(res, A); // 联想一下整数快速幂 A = mul(A, A); // base 翻倍 k >>= 1; } } int main() { cin >> n >> k; //输入原始矩阵 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) cin >> A.m[i][j]; //计算矩阵快速幂 qmi(); //输出 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) cout << res.m[i][j] << " "; cout << endl; } return 0; }