#include using namespace std; //矩阵快速幂 typedef long long LL; const int MOD = 1e9 + 7; const int N = 110; LL n, k; //本题数据范围很大,用int直接wa哭了 LL C[N][N], A[N][N], B[N][N]; //矩阵乘法 void mul(LL C[][N], LL A[][N], LL B[][N]) { //为什么非得要开一个临时的tmp来存结果呢,直接用C确实不行,原理不清楚 static LL tmp[N][N]; memset(tmp, 0, sizeof tmp); for (LL i = 0; i < n; i++) for (LL j = 0; j < n; j++) for (LL k = 0; k < n; k++) { tmp[i][j] += A[i][k] * B[k][j] % MOD; //矩阵乘法 tmp[i][j] %= MOD; } memcpy(C, tmp, sizeof tmp); } void qmi() { //将结果矩阵初始化为单位矩阵 memset(B, 0, sizeof B); for (int i = 0; i < n; i++) B[i][i] = 1; //其实就是把整数快速幂修改为矩阵快速幂 while (k) { //二进制快速幂 if (k & 1) mul(B, B, A); // 联想一下整数快速幂 mul(A, A, A); // base 翻倍 k >>= 1; } } int main() { cin >> n >> k; //输入原始矩阵 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) cin >> A[i][j]; //计算矩阵快速幂 qmi(); //输出 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) cout << B[i][j] << " "; cout << endl; } return 0; }