#include using namespace std; const int N = 10010, M = 60010; int dnt[N], low[N], id[N], sz[N], timestamp, scc_cnt; int stk[N], top, in_stk[N]; int dist[N]; //记录强连通分量距离起点的距离 int n, m; int h[N], hs[N], ne[M], e[M], w[M], idx; // hs[u]为强连通分量建的图的表头 void add(int h[], int a, int b, int c) { e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++; } //有向图的Tarjan算法求强连通分量 void tarjan(int u) { low[u] = dnt[u] = ++timestamp; stk[++top] = u; in_stk[u] = true; for (int i = h[u]; ~i; i = ne[i]) { int j = e[i]; if (!dnt[j]) { tarjan(j); low[u] = min(low[u], low[j]); } else if (in_stk[j]) low[u] = min(low[u], dnt[j]); } if (low[u] == dnt[u]) { int x; ++scc_cnt; do { x = stk[top--]; in_stk[x] = false; id[x] = scc_cnt; sz[scc_cnt]++; } while (x != u); } } int main() { memset(h, -1, sizeof h); memset(hs, -1, sizeof hs); scanf("%d %d", &n, &m); while (m--) { int a, b; scanf("%d %d", &a, &b); add(h, b, a, 1); // b->边权为1的边->a } //超级源点0号点 for (int i = 1; i <= n; i++) add(h, 0, i, 100); // 0号点有一条边权100的边到i // Tarjan算法求强连通分量(有向图) for (int i = 0; i <= n; i++) if (!dnt[i]) tarjan(i); //对于每个未访问过的点进行dfs,防止有孤立的点访问不到 if (scc_cnt != n + 1) puts("Poor Xed"); else { for (int u = 0; u <= n; ++u) { for (int i = h[u]; ~i; i = ne[i]) { int j = e[i]; int a = id[u], b = id[j]; if (a != b) add(hs, a, b, w[i]); //建新图 } } dist[0] = 0; //递推求出新建的图中的最长路(按照拓扑序来递推,scc_cnt ~ 1这个顺序符合拓扑序) // Tarjan算法本质是一个dfs算法,得到的拓扑序是倒序的,需要倒序枚举 //拓扑序Topsort本质是一个bfs算法,得到的拓扑序是正序的,需要正序枚举 for (int u = scc_cnt; u >= 1; u--) { //枚举i邻接的所有的边,找出最大的状态转移 for (int i = hs[u]; ~i; i = ne[i]) { int j = e[i]; dist[j] = max(dist[j], dist[u] + w[i]); } } int res = 0; for (int i = 1; i <= scc_cnt; i++) res += (sz[i] * dist[i]); printf("%d\n", res); } return 0; }