#include using namespace std; const int N = 100010, M = 2000010; // 因为要建新图,两倍的边 int n, m; // 点数、边数 int dfn[N], low[N], ts; int stk[N], top, in_stk[N]; int id[N], scc_cnt, sz[N]; int f[N]; int h[N], hs[N], e[M], ne[M], idx; // h: 原图;hs: 新图 void add(int h[], int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx++; } int p[N]; //原图的点权 int q[N]; //新图的点权 // tarjan求强连通分量 void tarjan(int u) { dfn[u] = low[u] = ++ts; stk[++top] = u; in_stk[u] = true; for (int i = h[u]; ~i; i = ne[i]) { int j = e[i]; if (!dfn[j]) { tarjan(j); low[u] = min(low[u], low[j]); } else if (in_stk[j]) low[u] = min(low[u], dfn[j]); } if (dfn[u] == low[u]) { ++scc_cnt; int x; do { x = stk[top--]; in_stk[x] = false; id[x] = scc_cnt; sz[scc_cnt]++; // scc_cnt:强连通块的编号 q[scc_cnt] += p[x]; //叠加点权,生成连通块的总点权 } while (x != u); } } int main() { memset(h, -1, sizeof h); //原图 memset(hs, -1, sizeof hs); //新图 scanf("%d %d", &n, &m); //读入点权 for (int i = 1; i <= n; i++) scanf("%d", &p[i]); for (int i = 1; i <= m; i++) { int a, b; scanf("%d %d", &a, &b); add(h, a, b); } //利用强连通分量,缩点,生成DAG for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i); // (2) 缩点,建图 for (int u = 1; u <= n; u++) for (int i = h[u]; ~i; i = ne[i]) { int j = e[i]; int a = id[u], b = id[j]; if (a != b) //去重边 add(hs, a, b); //加入到新图 } // (3) 根据拓扑序遍历DAG,从scc_cnt向前遍历自然满足拓扑序 for (int u = scc_cnt; u; u--) { // base case 递推起点 if (!f[u]) f[u] = q[u]; for (int i = hs[u]; ~i; i = ne[i]) { int j = e[i]; // 边(i, j) if (f[j] < f[u] + q[j]) f[j] = f[u] + q[j]; } } // (4) 求解答案 int res = 0; for (int i = 1; i <= scc_cnt; i++) res = max(res, f[i]); //输出 printf("%d\n", res); return 0; }