### 问题:$13$能否整除$9^{36}-1$、$9^{39}-1$?
#### 费马小定理
假如$p$是质数,且$gcd(a,p)=1$,那么 $$\huge \displaystyle a^{p-1}≡1\ (mod \ p)$$
本题中,$p=13$,是质数。$a=9$,$gcd(a,p)=1$,满足费马小定理,所以利用其得到结论:
$\large \displaystyle \because 9^{p-1}=9^{13-1}=9^{12}$
$\large \displaystyle \therefore 9^{12}\equiv 1 (mod \ 13)$
$\large \displaystyle \therefore (9^{12})^3\equiv 1 (mod \ 13)$
即
$\large \displaystyle \therefore 9^{36}\equiv 1 (mod \ 13)$
也就是$\large \displaystyle 13 | 9^{36} -1 $
---
再来看一下$\large \displaystyle 9^{39}-1$:
$\large \displaystyle 9^{39}\equiv 9^{36} \times 9^3 (mod \ 13) $
$\large \displaystyle \because 9^{36} \equiv 1 (mod \ 13) $
$\large \displaystyle 9^3=729=(13 \times 56 +1)=1 (mod \ 13)$
也就是$\large \displaystyle 13 | 9^{39} -1 $
总结:
望文知义,看着像就往定理上套,这个思路很明显啊,王道!