#include using namespace std; const int N = 5e5 + 10, M = 4e6 + 10; typedef pair PII; #define x first #define y second // 链式前向星 int e[M], h[N], idx, w[M], ne[M]; void add(int a, int b, int c = 0) { e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++; } int dfn[N], low[N], ts, root; set _set; void tarjan(int u, int fa) { dfn[u] = low[u] = ++ts; // 对比有向图强连通分量的代码,这里没有入栈的操作,原因是本题只想求割边,并不是想缩点, // 怀疑缩点时就需要加入stk,in_stk等操作了,待验证 for (int i = h[u]; ~i; i = ne[i]) { int v = e[i]; if (v == fa) continue; if (!dfn[v]) { tarjan(v, u); low[u] = min(low[u], low[v]); // 记录割边,论证过的结论 if (low[v] > dfn[u]) _set.insert({u, v}); // SET天生会排序,按first由小到大 } else low[u] = min(low[u], dfn[v]); } } int n, m; int main() { #ifndef ONLINE_JUDGE freopen("P1656.in", "r", stdin); #endif memset(h, -1, sizeof h); scanf("%d %d", &n, &m); while (m--) { int a, b; scanf("%d %d", &a, &b); if (a != b) add(a, b), add(b, a); } for (root = 1; root <= n; root++) if (!dfn[root]) tarjan(root, -1); for (auto i : _set) printf("%d %d\n", i.x, i.y); return 0; }