#include using namespace std; const int N = 4e5 + 10, M = N << 2; //因为需要装无向图,所以N=2e5,又因为有新图有旧图,都保存到一个数组中,所以需要再乘以2 //链式前向星 int e[M], h1[N], h2[N], idx, w[M], ne[M]; void add(int h[], int a, int b, int c = 0) { e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++; } int f[N][16]; int depth[N], dist[N]; void bfs() { // 1号点是源点 depth[1] = 1; queue q; q.push(1); while (q.size()) { int u = q.front(); q.pop(); for (int i = h2[u]; ~i; i = ne[i]) { int j = e[i]; if (!depth[j]) { q.push(j); depth[j] = depth[u] + 1; dist[j] = dist[u] + w[i]; f[j][0] = u; for (int k = 1; k <= 15; k++) f[j][k] = f[f[j][k - 1]][k - 1]; } } } } //最近公共祖先 int lca(int a, int b) { if (depth[a] < depth[b]) swap(a, b); for (int k = 15; k >= 0; k--) if (depth[f[a][k]] >= depth[b]) a = f[a][k]; if (a == b) return a; for (int k = 15; k >= 0; k--) if (f[a][k] != f[b][k]) a = f[a][k], b = f[b][k]; return f[a][0]; } //边双连通分量 int dfn[N], low[N], ts, stk[N], top; vector dcc[N]; //边双中有哪些原始点 int id[N], dcc_cnt; //原始点x属于哪个边双连通分量,dcc_cnt指边双连通分量个数 int is_bridge[M]; //记录哪些边是割边 void tarjan(int u, int fa) { dfn[u] = low[u] = ++ts; stk[++top] = u; for (int i = h1[u]; ~i; i = ne[i]) { int j = e[i]; if (!dfn[j]) { tarjan(j, i); low[u] = min(low[u], low[j]); if (dfn[u] < low[j]) is_bridge[i] = is_bridge[i ^ 1] = true; //记录割边 } else if (i != (fa ^ 1)) low[u] = min(low[u], dfn[j]); } if (dfn[u] == low[u]) { ++dcc_cnt; //边双数量+1 int x; do { x = stk[top--]; id[x] = dcc_cnt; // 记录点与边双关系 dcc[dcc_cnt].push_back(x); // 记录边双中有哪些点 } while (x != u); } } int n, m, q; int main() { memset(h1, -1, sizeof h1); // h1是原图的表头 memset(h2, -1, sizeof h2); // h2是新生成的缩完点的图表头 scanf("%d %d", &n, &m); //原图 for (int i = 1; i <= m; i++) { int a, b; scanf("%d %d", &a, &b); add(h1, a, b), add(h1, b, a); } //用tarjan来缩点,将边双连通分量缩点 for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i, -1); //将新图建出来 for (int u = 1; u <= n; u++) for (int i = h1[u]; ~i; i = ne[i]) { int j = e[i]; if (id[u] != id[j]) add(h2, id[u], id[j]), add(h2, id[j], id[u]); } //随便找个存在的号作为根节点,预处理出每个点到根节点的距离 bfs(); scanf("%d", &q); // q次询问 for (int i = 1; i <= q; i++) { int a, b; scanf("%d %d", &a, &b); a = id[a], b = id[b]; printf("%d\n", depth[a] + depth[b] - depth[lca(a, b)] * 2); //这就很显然了 } return 0; }