![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/3e695fc0fe04c3d91d46c6dc17f7e1f5.png) ① $\triangle BDA \cong \triangle CAE$ $SAS$ $\therefore CE=BD$ ② 求证: $\angle BOC=60^{\circ}$ 证明:根据上面证明过的全等三角形,所以 $\angle ABD =\angle ACE$ 设$BD$交$AC$于 $H$ $\because \angle AHB= \angle CHO$ 对顶角 $\therefore \angle HOC=60^{\circ}$ 两个三角形中两组角相等,第三组角必然相等 ③ 求证: $AO$是$\angle BOE$的角平分线 证明:由$A$向$BD$,$CE$引垂线 $\because \triangle ABD \cong \triangle ACE$ $\therefore 对应边的垂线段相等 $ $OA$是两个直角三角形的公共斜边,所以两个直角三角形全等($HL$) $\therefore AO$是$\angle BOE$的角平分线 ![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/7da3128cb2e08bcf018897e02f10199e.png)