![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/04/d69383cd7619884fef6b4b8252f45292.png) ### 一、第一问 $\because$ 圆中同弧所对的圆周角相等 $\therefore$ $\angle AED=\angle ABD$ ① 连接$AD$, $\because \angle ADB$是直径$AB$所对的圆周角,$\therefore \angle ADB=90^{\circ}$ 又 $\because D$是$BC$中点,所以$\triangle ADB \cong \triangle ADC$ $\therefore \angle ABD = \angle ACB$ ② 联立 ① ②, $\therefore \angle AED=\angle C$ ### 二、第二问 $\because \angle AED=55^{\circ}$ $\therefore \angle ABC=\angle C=55^{\circ}$ $\therefore \angle BAC=180^{\circ}-55^{\circ}-55^{\circ}=70^{\circ}$ 根据 圆的内接四边形对角互补,$\therefore \angle BDF=110^{\circ}$ ### 三、第三问 看到线段乘积,考虑找到相似三角形 $$\large \frac{EG}{?}=\frac{?}{ED}$$ 考虑$\triangle EAG \sim \triangle EAD$ 如何证明呢? 有一个公共角$\angle AED$ 还需要再找一个角: 因为$E$是 $\overset{{\frown}}{AB}$ 的中点, $\therefore \angle ADE=\angle BAE$ $\therefore \triangle EAG \sim \triangle EAD$ $$\large \frac{EG}{AE}=\frac{AE}{ED}$$ $\Rightarrow$ $EG*ED=AE^2$ $AE$长度如何求解呢? $\because \angle AFD+\angle ABD=180^{\circ}$ $\because \angle AFD+\angle CFD=180^{\circ}$ $\therefore \angle ABD=\angle CFD$ 因为有第一问的结论,所以$\triangle DCF$是等腰三角形,$CD=DF=BD=4$ $\because cos\angle ABD=\frac{2}{3}$ $\large \therefore \frac{BD}{AB}=\frac{2}{3}$ $\therefore AB=6$ $\because \triangle ABE$是等腰直角三角形 $\therefore AE=3\sqrt{2}$ $\therefore EG*ED=(3\sqrt{2})^2=18$