![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/03/41d9d11370cb9ab8d6de60bcc50225ea.png) - 设$NF=x$,而且$AN+FD=NF$,所以$AD=BC=2x$ - 对角线常见的辅助线引法,有$NH \perp BF$ 得到全等三角形$\triangle ANB \cong \triangle NHB$ $\therefore BH=AB=3,NH=AN$ - $\because \triangle BFE \cong \triangle BEC$ $\therefore BF=BC=2x$ 又$\because BH=AB=3,\therefore HF=2x-3$ 相似三角形之反$A$形:$\triangle FNH \sim FNA$ $\therefore \frac{FN}{FB}=\frac{NH}{AB}=\frac{FH}{AF}$ $\therefore \frac{x}{2x}=\frac{NH}{3}=\frac{2x-3}{AF}$ $\therefore \frac{1}{2}=\frac{NH}{3}=\frac{2x-3}{AF}$ $\therefore NH=\frac{3}{2}$ $\therefore AN=\frac{3}{2}$ $\therefore \frac{1}{2}=\frac{2x-3}{\frac{3}{2}+x}$ $\therefore 4x-6=\frac{3}{2}+x$ $3x=\frac{15}{2}$ $\therefore x=\frac{5}{2}$ $\therefore BC=2x=5$