main
黄海 2 years ago
parent c9c962258f
commit f965835015

@ -7,8 +7,8 @@ const int N = 110;
INFwa 1e9 INFwa 1e9
*/ */
int n, m; int n, m;
int mp[N][N];
int g[N][N]; int g[N][N];
int dis[N][N];
int path[N][N]; int path[N][N];
int ans[N]; int ans[N];
int cnt; int cnt;
@ -16,49 +16,49 @@ int mm;
void floyd() { void floyd() {
mm = INF; mm = INF;
for (int k = 1; k <= n; k++) { for (int k = 1; k <= n; k++) {
// dp
for (int i = 1; i < k; i++) { for (int i = 1; i < k; i++) {
for (int j = i + 1; j < k; j++) { for (int j = i + 1; j < k; j++) {
int x = g[i][j] + mp[k][i] + mp[k][j]; int x = dis[i][j] + g[k][i] + g[k][j];
if (x < mm) { if (x < mm) {
mm = x; mm = x;
int tmp = j; int tg = j;
cnt = 0; cnt = 0;
while (tmp != i) { while (tg != i) {
ans[cnt++] = tmp; ans[cnt++] = tg;
tmp = path[i][tmp]; tg = path[i][tg];
} }
ans[cnt++] = i; ans[cnt++] = i;
ans[cnt++] = k; ans[cnt++] = k;
} }
} }
} }
// floyd
for (int i = 1; i <= n; i++) { for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) { for (int j = 1; j <= n; j++)
if (g[i][j] > g[i][k] + g[k][j]) { if (dis[i][j] > dis[i][k] + dis[k][j]) {
g[i][j] = g[i][k] + g[k][j]; dis[i][j] = dis[i][k] + dis[k][j];
path[i][j] = path[k][j]; path[i][j] = path[k][j]; // 这咋还和我理解的不一样呢?
}
}
} }
} }
} }
int main() { int main() {
while (cin >> n >> m) { while (cin >> n >> m) {
for (int i = 1; i <= n; i++) { // 邻接矩阵初始化
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) { for (int j = 1; j <= n; j++) {
g[i][j] = mp[i][j] = INF; dis[i][j] = g[i][j] = INF;
path[i][j] = i; path[i][j] = i;
} }
}
// 读入边
while (m--) { while (m--) {
int a, b, c; int a, b, c;
cin >> a >> b >> c; cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c); // 防重边 g[a][b] = g[b][a] = min(g[a][b], c);
mp[a][b] = mp[b][a] = g[a][b]; dis[a][b] = dis[b][a] = g[a][b];
} }
floyd(); floyd();
@ -67,7 +67,7 @@ int main() {
puts("No solution."); puts("No solution.");
continue; continue;
} }
for (int i = 0; i < cnt; ++i) printf("%d%s", ans[i], (i == cnt - 1) ? "\n" : " "); for (int i = 0; i < cnt; i++) printf("%d%s", ans[i], (i == cnt - 1) ? "\n" : " ");
} }
return 0; return 0;
} }
Loading…
Cancel
Save