|
|
|
@ -1,41 +1,37 @@
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 200010, M = N << 1;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
|
|
|
|
|
const int N = 200010, M = N << 1;
|
|
|
|
|
|
|
|
|
|
int n;
|
|
|
|
|
|
|
|
|
|
// 链式前向星
|
|
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int n;
|
|
|
|
|
int f[N];
|
|
|
|
|
int g[N];
|
|
|
|
|
int sz[N], f[N], g[N], ans;
|
|
|
|
|
|
|
|
|
|
// 第一次dfs,向下向上,生成汇总信息
|
|
|
|
|
void dfs1(int u, int fa) {
|
|
|
|
|
f[u] = 1; // 以u为根的子树大小,初始时有u一个节点,sz[u]=1
|
|
|
|
|
sz[u] = 1;
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (v != fa) {
|
|
|
|
|
// 先填充子孙节点的统计信息
|
|
|
|
|
dfs1(v, u);
|
|
|
|
|
// 利用子孙节点的统计信息,汇总生成u节点的连通块节点个数统计信息
|
|
|
|
|
f[u] += f[v];
|
|
|
|
|
}
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
dfs1(v, u);
|
|
|
|
|
sz[u] += sz[v];
|
|
|
|
|
f[u] += f[v];
|
|
|
|
|
}
|
|
|
|
|
f[u] += sz[u];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 第二次dfs,向上向下
|
|
|
|
|
void dfs2(int u, int fa) {
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (v != fa) {
|
|
|
|
|
g[v] = g[u] + f[1] - 2 * f[v];
|
|
|
|
|
dfs2(v, u);
|
|
|
|
|
}
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
g[v] = n - sz[v] + g[u] - sz[v];
|
|
|
|
|
dfs2(v, u);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -49,16 +45,10 @@ signed main() {
|
|
|
|
|
cin >> a >> b;
|
|
|
|
|
add(a, b), add(b, a);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dfs1(1, 0);
|
|
|
|
|
|
|
|
|
|
// 这是啥?
|
|
|
|
|
for (int i = 1; i <= n; i++) g[1] += f[i];
|
|
|
|
|
|
|
|
|
|
g[1] = f[1];
|
|
|
|
|
dfs2(1, 0);
|
|
|
|
|
|
|
|
|
|
int ans = 0;
|
|
|
|
|
for (int i = 1; i <= n; i++) ans = max(ans, g[i]);
|
|
|
|
|
|
|
|
|
|
cout << ans << endl;
|
|
|
|
|
}
|