|
|
|
@ -3,20 +3,22 @@ using namespace std;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
|
|
|
|
|
const int N = 1003;
|
|
|
|
|
int g[N][N], path[N][N]; // 邻接矩阵、路径
|
|
|
|
|
int n, x, y, w[N]; // 额外费用
|
|
|
|
|
int g[N][N]; // 邻接矩阵
|
|
|
|
|
int n; // n个点
|
|
|
|
|
int w[N]; // 额外费用
|
|
|
|
|
int path[N][N]; // 路径
|
|
|
|
|
void floyd() {
|
|
|
|
|
for (int k = 1; k <= n; k++)
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (g[i][k] != INF)
|
|
|
|
|
if (g[i][k] != INF) // floyd优化
|
|
|
|
|
for (int j = 1; j <= n; j++) {
|
|
|
|
|
if (g[i][j] > g[i][k] + g[k][j] + w[k]) {
|
|
|
|
|
g[i][j] = g[i][k] + g[k][j] + w[k];
|
|
|
|
|
if (g[i][j] > g[i][k] + g[k][j] + w[k]) { // w[k]:点权
|
|
|
|
|
g[i][j] = g[i][k] + g[k][j] + w[k]; // k的加入,使得i->j的路径变短
|
|
|
|
|
path[i][j] = path[i][k];
|
|
|
|
|
}
|
|
|
|
|
if (g[i][j] == g[i][k] + g[k][j] + w[k]) {
|
|
|
|
|
if (path[i][j] > path[i][k]) // 字典序
|
|
|
|
|
path[i][j] = path[i][k];
|
|
|
|
|
|
|
|
|
|
if (g[i][j] == g[i][k] + g[k][j] + w[k]) { // 如果存在多条最短路径,也就是,除了k还有其它k1,k2使得i->j距离一样小
|
|
|
|
|
if (path[i][j] > path[i][k]) path[i][j] = path[i][k]; // 字典序,谁更小就留下谁
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -31,13 +33,16 @@ int main() {
|
|
|
|
|
}
|
|
|
|
|
for (int i = 1; i <= n; i++) cin >> w[i];
|
|
|
|
|
floyd();
|
|
|
|
|
|
|
|
|
|
int x, y;
|
|
|
|
|
while (cin >> x >> y) {
|
|
|
|
|
if (x == -1 && y == -1) break;
|
|
|
|
|
printf("From %d to %d :\n", x, y);
|
|
|
|
|
printf("Path: %d", x);
|
|
|
|
|
int u = x, v = y;
|
|
|
|
|
// 用循环打印路径
|
|
|
|
|
// 理解路径思路:
|
|
|
|
|
// (1) 从起点x出发,用循环打印路径,最后一个打印的肯定是y
|
|
|
|
|
// (2) 从起点x出发,第二个点应该是离x最近的,并且是最短路径上的那个点,这个点就是path[x][y]!
|
|
|
|
|
// path[x][y]:从起点x出发,到终点y有多条最短路径,我们选择字典序最小的那条最短路径,然后path[x][y]就是从x出发,离x最近的这条最短路径上的点。
|
|
|
|
|
while (x != y) {
|
|
|
|
|
printf("-->%d", path[x][y]);
|
|
|
|
|
x = path[x][y];
|
|
|
|
|