|
|
|
@ -208,64 +208,59 @@ signed main() {
|
|
|
|
|
> **注**: 与上一题的区别在于上一题明确给出了最大值$n$,也就是右边界的范围,本题没有告诉我们范围,需要我们自己找到右边界。随着右边界越来越大,肯定符合条件的数字个数也会越来越多,也就是上面说到的单调性。我们可以用二分来假设一个右边界,然后不断的收缩区间来找到准备的右边界:在上道题的基础上加上二分,判断$1$到$mid$是否有$K$个无平方因子的数,以此改变左右边界即可。
|
|
|
|
|
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include<iostream>
|
|
|
|
|
#define ll long long
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
int vis[40560],mo[40560],p[4253],n;
|
|
|
|
|
void init()
|
|
|
|
|
{
|
|
|
|
|
int tot=0,k;
|
|
|
|
|
mo[1]=1;
|
|
|
|
|
for(int i=2;i<=40559;i++)
|
|
|
|
|
{
|
|
|
|
|
if(vis[i]==0)
|
|
|
|
|
{
|
|
|
|
|
p[++tot]=i;
|
|
|
|
|
mo[i]=-1;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
const int N = 100010;
|
|
|
|
|
|
|
|
|
|
// 筛法求莫比乌斯函数(枚举约数)
|
|
|
|
|
int mu[N];
|
|
|
|
|
int primes[N], cnt;
|
|
|
|
|
bool st[N];
|
|
|
|
|
void get_mobius(int n) {
|
|
|
|
|
mu[1] = 1;
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
|
if (!st[i]) {
|
|
|
|
|
primes[cnt++] = i;
|
|
|
|
|
mu[i] = -1;
|
|
|
|
|
}
|
|
|
|
|
for(int j=1;j<=tot&&(k=i*p[j])<=40559;j++)
|
|
|
|
|
{
|
|
|
|
|
vis[k]=1;
|
|
|
|
|
if(i%p[j]!=0)mo[k]=-mo[i];
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
mo[k]=0;
|
|
|
|
|
for (int j = 0; primes[j] <= n / i; j++) {
|
|
|
|
|
int t = primes[j] * i;
|
|
|
|
|
st[t] = true;
|
|
|
|
|
if (i % primes[j] == 0) {
|
|
|
|
|
mu[t] = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
mu[t] = -mu[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
bool judge(int x)
|
|
|
|
|
{
|
|
|
|
|
ll ans=0;int i;
|
|
|
|
|
for(int i=1;i*i<=x;i++)
|
|
|
|
|
{
|
|
|
|
|
ans+=mo[i]*(x/(i*i));
|
|
|
|
|
}
|
|
|
|
|
if(ans>=n)return true;
|
|
|
|
|
else return false;
|
|
|
|
|
int check(int mid, int k) {
|
|
|
|
|
int res = 0;
|
|
|
|
|
for (int i = 1; i * i <= mid; i++) // 枚举范围内每个平方数
|
|
|
|
|
res += mu[i] * (mid / i / i);
|
|
|
|
|
return res >= k;
|
|
|
|
|
}
|
|
|
|
|
int main()
|
|
|
|
|
{
|
|
|
|
|
int t;
|
|
|
|
|
ll l,r,mid;
|
|
|
|
|
init();
|
|
|
|
|
scanf("%d",&t);
|
|
|
|
|
while(t--)
|
|
|
|
|
{
|
|
|
|
|
scanf("%d",&n);
|
|
|
|
|
l=n,r=1644934082;
|
|
|
|
|
while(l<r)
|
|
|
|
|
{
|
|
|
|
|
// cout<<l<<" oo "<<r<<endl;
|
|
|
|
|
mid=(l+r)>>1;
|
|
|
|
|
if(judge(mid))
|
|
|
|
|
r=mid;
|
|
|
|
|
else l=mid+1;
|
|
|
|
|
}
|
|
|
|
|
printf("%lld\n",r);
|
|
|
|
|
|
|
|
|
|
signed main() {
|
|
|
|
|
// 获取莫比乌斯函数值
|
|
|
|
|
get_mobius(N - 1);
|
|
|
|
|
|
|
|
|
|
int T, k;
|
|
|
|
|
cin >> T; // T组测试数据
|
|
|
|
|
while (T--) {
|
|
|
|
|
cin >> k; // 第k个数
|
|
|
|
|
int l = 1, r = 2e9;
|
|
|
|
|
while (l < r) {
|
|
|
|
|
int mid = l + r >> 1;
|
|
|
|
|
if (check(mid, k))
|
|
|
|
|
r = mid;
|
|
|
|
|
else
|
|
|
|
|
l = mid + 1;
|
|
|
|
|
}
|
|
|
|
|
cout << r << endl;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|