|
|
|
@ -1,14 +1,14 @@
|
|
|
|
|
#include <iostream>
|
|
|
|
|
#include <cstdio>
|
|
|
|
|
#include <cmath>
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
|
|
|
|
|
const int N = 1e7 + 10; // 枚举到sqrt(1e14)=1e7即可
|
|
|
|
|
const int M = 110, N = 10000010;
|
|
|
|
|
|
|
|
|
|
int t, m, sqrtN, n, ans, q[M];
|
|
|
|
|
|
|
|
|
|
// 筛法求莫比乌斯函数(枚举约数)
|
|
|
|
|
int mu[N], s1[N], s2[N]; // s1[N]:梅滕斯函数,也就是莫比乌斯函数的前缀和
|
|
|
|
|
int mu[N], sum[N]; // sum[N]:梅滕斯函数,也就是莫比乌斯函数的前缀和
|
|
|
|
|
int primes[N], cnt;
|
|
|
|
|
bool st[N];
|
|
|
|
|
void get_mobius(int n) {
|
|
|
|
@ -29,34 +29,30 @@ void get_mobius(int n) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 维护u(x)前缀和:梅滕斯函数
|
|
|
|
|
for (int i = 1; i <= n; i++) s1[i] = s1[i - 1] + mu[i];
|
|
|
|
|
for (int i = 1; i <= n; i++) s2[i] = s2[i - 1] + mu[i] * mu[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int calc(int n) {
|
|
|
|
|
if (n <= N) return s2[n];
|
|
|
|
|
int res = 0, m = sqrt(n);
|
|
|
|
|
for (int l = 1, r; l <= m; l = r + 1) {
|
|
|
|
|
r = min((int)sqrt(n / (n / (l * l))), m);
|
|
|
|
|
res += (n / (l * l)) * (s1[r] - s1[l - 1]);
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + mu[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
signed main() {
|
|
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
|
|
freopen("SQP4168.in", "r", stdin);
|
|
|
|
|
/*
|
|
|
|
|
1
|
|
|
|
|
608
|
|
|
|
|
60792710185947
|
|
|
|
|
*/
|
|
|
|
|
#endif
|
|
|
|
|
int n, T;
|
|
|
|
|
cin >> T;
|
|
|
|
|
get_mobius(N - 1);
|
|
|
|
|
while (T--) {
|
|
|
|
|
cin >> n;
|
|
|
|
|
cout << calc(n) << endl;
|
|
|
|
|
cin >> t;
|
|
|
|
|
for (int i = 1; i <= t; i++) {
|
|
|
|
|
cin >> q[i];
|
|
|
|
|
n = max(n, q[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
sqrtN = sqrt(n);
|
|
|
|
|
|
|
|
|
|
get_mobius(sqrtN); // 线性求莫比乌斯函数, 前缀和
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= t; i++) {
|
|
|
|
|
n = q[i];
|
|
|
|
|
ans = 0;
|
|
|
|
|
for (int l = 1, r; l <= n; l = r + 1) {
|
|
|
|
|
if (n / (l * l) == 0) { break; }
|
|
|
|
|
r = sqrt(n / (n / (l * l)));
|
|
|
|
|
ans += n / (l * l) * (sum[r] - sum[l - 1]);
|
|
|
|
|
}
|
|
|
|
|
printf("%lld\n", ans);
|
|
|
|
|
}
|
|
|
|
|
}
|