|
|
|
@ -2,91 +2,78 @@
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 500010, M = N << 1;
|
|
|
|
|
#define int long long
|
|
|
|
|
int n, m, k;
|
|
|
|
|
#define INF 1e18
|
|
|
|
|
int sz[N]; // 以u为根节点是否有人
|
|
|
|
|
int g[N]; // 从u出发把u子树上的人都送回家再回到u所需要的时间
|
|
|
|
|
vector<pair<int, int>> vec[N];
|
|
|
|
|
int max1[N]; // u的子树中最长链的长度
|
|
|
|
|
int max2[N]; // u的子树中次长链
|
|
|
|
|
int up[N]; // 不在u的子树内,距离u最远的那个人的家到u的距离
|
|
|
|
|
int id[N]; // 最长链条是哪条链
|
|
|
|
|
int ans[N]; // 从u出发把所有点都送回家再回到u的结果
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
|
|
|
|
|
// 链式前向星
|
|
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int sz[N]; // 哪个点上有人
|
|
|
|
|
int len[N]; // len[u]:经过u的最长链
|
|
|
|
|
int id[N]; // id[u]:最长链的第一节点
|
|
|
|
|
int slen[N]; // slen[u]:经过u的次长链
|
|
|
|
|
int f[N], g[N];
|
|
|
|
|
|
|
|
|
|
// ans[i] -max(up[i],max1[i]);
|
|
|
|
|
void dfs1(int u, int fa) {
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
for (auto ts : vec[u]) {
|
|
|
|
|
int v = ts.first;
|
|
|
|
|
int w = ts.second;
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
dfs1(v, u); // 由底向上,先递归,再更新统计信息
|
|
|
|
|
|
|
|
|
|
// 如果v这个节点,及它的子节点上有人,那么需要汇总统计信息到sz[u]上去
|
|
|
|
|
// 如果v上就没有人,那就不用统计了
|
|
|
|
|
if (sz[v] == 0) continue;
|
|
|
|
|
|
|
|
|
|
// ① u->v,v->u一来一回,路径翻倍 2*w[i]
|
|
|
|
|
// ② 所有子节点都对u有贡献,所以f[u]+
|
|
|
|
|
// ③ 跑完v为根的子树后,v子树的贡献要累加到u子树上,所以f[u]+=f[v]+2*w[i]
|
|
|
|
|
f[u] += f[v] + 2 * w[i];
|
|
|
|
|
|
|
|
|
|
// len[v]:v点出发的最长链长度
|
|
|
|
|
int x = len[v] + w[i];
|
|
|
|
|
|
|
|
|
|
// 更新最长链
|
|
|
|
|
if (x >= len[u])
|
|
|
|
|
slen[u] = len[u], len[u] = x, id[u] = v;
|
|
|
|
|
else if (x > slen[u]) // 更新次长链
|
|
|
|
|
slen[u] = x;
|
|
|
|
|
|
|
|
|
|
// 记录累计人数
|
|
|
|
|
dfs1(v, u);
|
|
|
|
|
if (sz[v]) {
|
|
|
|
|
g[u] += g[v] + 2 * w;
|
|
|
|
|
int now = max1[v] + w;
|
|
|
|
|
if (now >= max1[u]) {
|
|
|
|
|
max2[u] = max1[u];
|
|
|
|
|
max1[u] = now;
|
|
|
|
|
id[u] = v;
|
|
|
|
|
} else if (now >= max2[u]) {
|
|
|
|
|
max2[u] = now;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
sz[u] += sz[v];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void dfs2(int u, int fa) {
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
for (auto ts : vec[u]) {
|
|
|
|
|
int v = ts.first;
|
|
|
|
|
int w = ts.second;
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
if (sz[v] == 0)
|
|
|
|
|
g[v] = g[u] + 2 * w[i], len[v] = len[u] + w[i];
|
|
|
|
|
else if (m - sz[v] > 0) {
|
|
|
|
|
g[v] = g[u];
|
|
|
|
|
|
|
|
|
|
if (id[u] != v && len[v] < len[u] + w[i])
|
|
|
|
|
slen[v] = len[v], len[v] = len[u] + w[i], id[v] = u;
|
|
|
|
|
else if (len[v] < slen[u] + w[i])
|
|
|
|
|
slen[v] = len[v], len[v] = slen[u] + w[i], id[v] = 1;
|
|
|
|
|
else if (slen[v] < len[u] + w[i] && id[u] != v)
|
|
|
|
|
slen[v] = len[u] + w[i];
|
|
|
|
|
else if (slen[v] < slen[u] + w[i])
|
|
|
|
|
slen[v] = slen[u] + w[i];
|
|
|
|
|
} else
|
|
|
|
|
g[v] = f[v];
|
|
|
|
|
if (sz[v] == k) {
|
|
|
|
|
ans[v] = g[v];
|
|
|
|
|
up[v] = 0;
|
|
|
|
|
} else if (sz[v] == 0) {
|
|
|
|
|
ans[v] = ans[u] + 2 * w;
|
|
|
|
|
up[v] = max(up[u], max1[u]) + w;
|
|
|
|
|
} else if (sz[v] && sz[v] != k) {
|
|
|
|
|
ans[v] = ans[u];
|
|
|
|
|
if (id[u] == v) {
|
|
|
|
|
up[v] = max(max2[u], up[u]) + w;
|
|
|
|
|
} else
|
|
|
|
|
up[v] = max(up[u], max1[u]) + w;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dfs2(v, u);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
signed main() {
|
|
|
|
|
// 初始化链式前向星
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
signed main() {
|
|
|
|
|
cin >> n >> k;
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
int a, b, c;
|
|
|
|
|
cin >> a >> b >> c;
|
|
|
|
|
add(a, b, c), add(b, a, c);
|
|
|
|
|
vec[a].push_back({b, c});
|
|
|
|
|
vec[b].push_back({a, c});
|
|
|
|
|
}
|
|
|
|
|
for (int i = 1; i <= m; i++) { // 有m个人
|
|
|
|
|
for (int i = 1; i <= k; i++) {
|
|
|
|
|
int x;
|
|
|
|
|
cin >> x;
|
|
|
|
|
sz[x] = 1; // x号点上有人
|
|
|
|
|
sz[x] = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dfs1(1, 0);
|
|
|
|
|
g[1] = f[1];
|
|
|
|
|
|
|
|
|
|
ans[1] = g[1];
|
|
|
|
|
dfs2(1, 0);
|
|
|
|
|
for (int i = 1; i <= n; i++) cout << g[i] - len[i] << endl;
|
|
|
|
|
int minn = INF;
|
|
|
|
|
for (int u = 1; u <= n; u++) cout << ans[u] - max(up[u], max1[u]) << endl;
|
|
|
|
|
}
|