|
|
|
@ -1,12 +1,69 @@
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
const int N = 110;
|
|
|
|
|
double a[N];
|
|
|
|
|
int n;
|
|
|
|
|
int f1[N], f2[N];
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n;
|
|
|
|
|
for (int i = 1; i <= n; i++) cin >> a[i];
|
|
|
|
|
// 以每棵树为保留的,并且是最高的那棵树,分别求出最长上升序列长度x 和 最长下降序列长度y, x+y-1就是最终保留的整体序列长度,
|
|
|
|
|
// 去掉的数量就是 n-(x+y-1)的值。然后求min()
|
|
|
|
|
// 需要注意的是默认值设置为-1,比如 5 4 3 2 1 ,我们取哪棵为最高点都行不通,不存在左侧上侧到峰值的情况,右侧即使符合也不行的。
|
|
|
|
|
|
|
|
|
|
// 求最长上升
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
f1[i] = 1;
|
|
|
|
|
for (int j = 1; j < i; j++)
|
|
|
|
|
if (a[i] > a[j]) f1[i] = max(f1[i], f1[j] + 1);
|
|
|
|
|
}
|
|
|
|
|
// 求最长下降
|
|
|
|
|
for (int i = n; i >= 1; i--) {
|
|
|
|
|
f2[i] = 1;
|
|
|
|
|
for (int j = n; j > i; j--)
|
|
|
|
|
if (a[i] > a[j]) f2[i] = max(f2[i], f2[j] + 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// // 输出最长上升
|
|
|
|
|
// for (int i = 1; i <= n; i++) cout << f1[i] << " ";
|
|
|
|
|
// cout << endl;
|
|
|
|
|
|
|
|
|
|
// // 输出最长下降
|
|
|
|
|
// for (int i = 1; i <= n; i++) cout << f2[i] << " ";
|
|
|
|
|
// cout << endl;
|
|
|
|
|
|
|
|
|
|
bool flag = true;
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (f1[i] != 1) {
|
|
|
|
|
flag = false;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (flag) {
|
|
|
|
|
cout << -1 << endl;
|
|
|
|
|
exit(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
flag = true;
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (f2[i] != 1) {
|
|
|
|
|
flag = false;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (flag) {
|
|
|
|
|
cout << -1 << endl;
|
|
|
|
|
exit(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int mi = -1;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
int tmp = f1[i] + f2[i];
|
|
|
|
|
mi = max(mi, tmp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cout << n - mi + 1 << endl;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|