main
黄海 2 years ago
parent 9f9f121a05
commit 769a38c81b

@ -110,16 +110,12 @@ $\large L[i][i]=R[i][i]=a_i$
#### 分类讨论
![](https://cdn.acwing.com/media/article/image/2022/04/04/145584_d2d0424bb4-%E6%97%A0%E6%A0%87%E9%A2%98.jpg)
- **特殊情况:$L=R=0$**
若 $R=0$ 则 $L=R=0$,此时 $x>\max\{L,R\}$,也就是说 $L=0$ 和 $R=0$ 都属于 $Case$ $5$,故其它 $Case$ 满足 $L,R>0$。
令 $\displaystyle \large X=a[j](x>0)$
若 $R=0$ 则 $L=R=0$,此时 $x>\max\{L,R\}$,也就是说 $L=0$ 和 $R=0$ 都属于 $Case$ $5$,故其它 $Case$ 满足 $L,R>0$。
> <font color='red'><b>注:因$R=0$,表示在[$i$,$j-1$]确定后,右侧为$0$就能满足[$i$,$j-1$]这一段为先手必败,此时,左侧增加那堆个数为$0$就可以继续保持原来的先手必败,即$L=0$,而且已经证明了$L=R=0$是唯一的。</b></font>
* $X=R$$Case$ $1$

Loading…
Cancel
Save