|
|
|
@ -3,18 +3,18 @@ using namespace std;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
|
|
|
|
|
const int Six = 166666668; // 6,2关于mod的乘法逆元
|
|
|
|
|
const int Two = 500000004;
|
|
|
|
|
const int mod = 1e9 + 7; // 尽量这样定义mod ,减少非必要的麻烦
|
|
|
|
|
|
|
|
|
|
int Mod(int a, int b) {
|
|
|
|
|
return (a % mod) * (b % mod) % mod;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 递推函数可以用通项式直接求解
|
|
|
|
|
// 通项式:a[kn]=(k*n)^2+k*n
|
|
|
|
|
int F(int k, int n) {
|
|
|
|
|
return (Mod(k, k) * Mod(Mod(n, n + 1), Mod(n + n + 1, Six)) % mod + Mod(Mod(1 + n, n), Mod(k, Two))) % mod;
|
|
|
|
|
// 快速幂
|
|
|
|
|
int qmi(int a, int b) {
|
|
|
|
|
int res = 1;
|
|
|
|
|
a %= mod;
|
|
|
|
|
while (b) {
|
|
|
|
|
if (b & 1) res = res * a % mod;
|
|
|
|
|
b >>= 1;
|
|
|
|
|
a = a * a % mod;
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vector<int> p; // 将m拆分成的质数因子序列p
|
|
|
|
@ -25,11 +25,17 @@ signed main() {
|
|
|
|
|
#endif
|
|
|
|
|
int n, m;
|
|
|
|
|
|
|
|
|
|
int rev6 = qmi(6, mod - 2);
|
|
|
|
|
int rev2 = qmi(2, mod - 2);
|
|
|
|
|
|
|
|
|
|
while (cin >> n >> m) {
|
|
|
|
|
int sum = F(1, n), ans = 0; // 计算总和sum
|
|
|
|
|
int res = n * (n + 1) % mod * (2 * n + 1) % mod * rev6 % mod;
|
|
|
|
|
int t = n * (n + 1) % mod * rev2 % mod;
|
|
|
|
|
|
|
|
|
|
res = (res + t) % mod;
|
|
|
|
|
|
|
|
|
|
// 质因子分解
|
|
|
|
|
int t = m; // 复制出来
|
|
|
|
|
t = m; // 复制出来
|
|
|
|
|
for (int i = 2; i * i <= t; i++) {
|
|
|
|
|
if (t % i == 0) {
|
|
|
|
|
p.push_back(i);
|
|
|
|
@ -45,19 +51,23 @@ signed main() {
|
|
|
|
|
例如i=3(11二进制) 表示取前两个因子,i=5(101)表示取第1个和第3个的因子
|
|
|
|
|
*/
|
|
|
|
|
for (int i = 1; i < (1 << p.size()); i++) {
|
|
|
|
|
int cnt = 0, s = 1;
|
|
|
|
|
int cnt = 0, tmp = 1;
|
|
|
|
|
for (int j = 0; j < p.size(); j++)
|
|
|
|
|
if ((i >> j) & 1) {
|
|
|
|
|
cnt++;
|
|
|
|
|
s *= p[j];
|
|
|
|
|
tmp *= p[j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int nn = n / tmp;
|
|
|
|
|
int pt = (nn) % mod * (nn + 1) % mod * (2 * nn + 1) % mod * rev6 % mod;
|
|
|
|
|
pt = pt * tmp % mod * tmp % mod;
|
|
|
|
|
pt = (pt + nn * (tmp + tmp * nn) % mod * rev2 % mod) % mod;
|
|
|
|
|
if (cnt & 1)
|
|
|
|
|
ans = (ans + F(s, n / s)) % mod; // 根据容斥,取奇数个因子时,应加上
|
|
|
|
|
res = (res - pt + mod) % mod;
|
|
|
|
|
else
|
|
|
|
|
ans = ((ans - F(s, n / s)) % mod + mod) % mod; // 偶数的减,减法需要防负数
|
|
|
|
|
res = (res + pt) % mod;
|
|
|
|
|
}
|
|
|
|
|
// 补集,标准取模动作
|
|
|
|
|
cout << ((sum - ans) % mod + mod) % mod << endl;
|
|
|
|
|
cout << res << endl;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|