main
黄海 2 years ago
parent 6b98b416a2
commit 348d596fff

@ -63,18 +63,19 @@ $1≤n≤300,0≤v_i,p_i,j≤10^5$
#include <bits/stdc++.h>
using namespace std;
const int N = 310;
const int INF = 0x3f3f3f3f;
int n; // n条顶点
int res; // 最小生成树的权值和
int el; // 边数
// Kruskal用到的结构体
const int M = 2 * N * N; // 无向图*2稠密图N*N
struct Edge {
int a, b, w;
int a, b, c;
const bool operator<(const Edge &t) const {
return w < t.w;
return c < t.c;
}
} e[M];
} edge[M];
int el; // 边数
// 并查集
int p[N];
int find(int x) {
@ -84,39 +85,40 @@ int find(int x) {
// Kruskal算法
int kruskal() {
// 按边的权重排序
sort(e, e + el);
sort(edge, edge + el);
// 初始化并查集,注意并查集的初始是从0开始的因为0号是超级源点
for (int i = 0; i <= n; i++) p[i] = i;
// 枚举每条边
for (int i = 0; i < el; i++) {
int a = e[i].a, b = e[i].b, w = e[i].w;
int a = edge[i].a, b = edge[i].b, c = edge[i].c;
a = find(a), b = find(b);
if (a != b)
p[a] = b, res += w;
p[a] = b, res += c;
}
return res;
}
int main() {
cin >> n;
// 建立超级源点(0 <-> 1~n )
int w;
int c;
for (int i = 1; i <= n; i++) {
cin >> w; // 点
e[el++] = {0, i, w};
e[el++] = {i, 0, w};
cin >> c; // 点权转边
edge[el++] = {0, i, c};
edge[el++] = {i, 0, c};
}
// 本题是按矩阵读入的不是按a,b,c方式读入的
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
cin >> w;
e[el++] = {i, j, w};
e[el++] = {j, i, w};
cin >> c;
edge[el++] = {i, j, c};
edge[el++] = {j, i, c};
}
// 利用Kruskal计算最小生成树
printf("%d\n", kruskal());
cout << kruskal() << endl;
return 0;
}
@ -131,34 +133,36 @@ const int N = 310;
int n;
int g[N][N];
int dist[N];
int dis[N];
bool st[N];
int res; // 最小生成树里面边的长度之和
int prim() {
memset(dist, 0x3f, sizeof dist); // 初始化所有距离为INF
dist[0] = 0; // 超级源点是在生成树中的
void prim() {
memset(dis, 0x3f, sizeof dis); // 初始化所有距离为INF
dis[0] = 0; // 超级源点是在生成树中的
for (int i = 0; i <= n; i++) { // 注意这里因为引入了超级源点所以点的个数是n+1
int t = -1;
for (int j = 0; j <= n; j++)
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
st[t] = true;
res += dist[t];
if (!st[j] && (t == -1 || dis[t] > dis[j])) t = j;
if (i) res += dis[t];
// 有超级源点的题,是必然存在最小生成树的
// 注意这里也是需要从0~n共n+1个
for (int j = 0; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
for (int j = 0; j <= n; j++)
if (!st[j] && dis[j] > g[t][j])
dis[j] = g[t][j];
st[t] = true;
}
return res;
}
int main() {
cin >> n;
// 建立超级源点(0 <-> 1~n ),点权转化为超级源点到此节点的边权
for (int i = 1; i <= n; i++) {
cin >> g[0][i];
g[i][0] = g[0][i];
int c;
cin >> c;
g[i][0] = g[0][i] = c;
}
// 本题是按矩阵读入的不是按a,b,c方式读入的
for (int i = 1; i <= n; i++)
@ -166,7 +170,8 @@ int main() {
cin >> g[i][j];
// 利用prim计算最小生成树
printf("%d\n", prim());
prim();
cout << res << endl;
return 0;
}

@ -1,18 +1,19 @@
#include <bits/stdc++.h>
using namespace std;
const int N = 310;
const int INF = 0x3f3f3f3f;
int n; // n条顶点
int res; // 最小生成树的权值和
int el; // 边数
// Kruskal用到的结构体
const int M = 2 * N * N; // 无向图*2稠密图N*N
struct Edge {
int a, b, w;
int a, b, c;
const bool operator<(const Edge &t) const {
return w < t.w;
return c < t.c;
}
} e[M];
} edge[M];
int el; // 边数
// 并查集
int p[N];
int find(int x) {
@ -22,39 +23,40 @@ int find(int x) {
// Kruskal算法
int kruskal() {
// 按边的权重排序
sort(e, e + el);
sort(edge, edge + el);
// 初始化并查集,注意并查集的初始是从0开始的因为0号是超级源点
for (int i = 0; i <= n; i++) p[i] = i;
// 枚举每条边
for (int i = 0; i < el; i++) {
int a = e[i].a, b = e[i].b, w = e[i].w;
int a = edge[i].a, b = edge[i].b, c = edge[i].c;
a = find(a), b = find(b);
if (a != b)
p[a] = b, res += w;
p[a] = b, res += c;
}
return res;
}
int main() {
cin >> n;
// 建立超级源点(0 <-> 1~n )
int w;
int c;
for (int i = 1; i <= n; i++) {
cin >> w; // 点
e[el++] = {0, i, w};
e[el++] = {i, 0, w};
cin >> c; // 点权转边
edge[el++] = {0, i, c};
edge[el++] = {i, 0, c};
}
// 本题是按矩阵读入的不是按a,b,c方式读入的
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
cin >> w;
e[el++] = {i, j, w};
e[el++] = {j, i, w};
cin >> c;
edge[el++] = {i, j, c};
edge[el++] = {j, i, c};
}
// 利用Kruskal计算最小生成树
printf("%d\n", kruskal());
cout << kruskal() << endl;
return 0;
}

@ -5,34 +5,36 @@ const int N = 310;
int n;
int g[N][N];
int dist[N];
int dis[N];
bool st[N];
int res; // 最小生成树里面边的长度之和
int prim() {
memset(dist, 0x3f, sizeof dist); // 初始化所有距离为INF
dist[0] = 0; // 超级源点是在生成树中的
void prim() {
memset(dis, 0x3f, sizeof dis); // 初始化所有距离为INF
dis[0] = 0; // 超级源点是在生成树中的
for (int i = 0; i <= n; i++) { // 注意这里因为引入了超级源点所以点的个数是n+1
int t = -1;
for (int j = 0; j <= n; j++)
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
st[t] = true;
res += dist[t];
if (!st[j] && (t == -1 || dis[t] > dis[j])) t = j;
if (i) res += dis[t];
// 有超级源点的题,是必然存在最小生成树的
// 注意这里也是需要从0~n共n+1个
for (int j = 0; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
for (int j = 0; j <= n; j++)
if (!st[j] && dis[j] > g[t][j])
dis[j] = g[t][j];
st[t] = true;
}
return res;
}
int main() {
cin >> n;
// 建立超级源点(0 <-> 1~n ),点权转化为超级源点到此节点的边权
for (int i = 1; i <= n; i++) {
cin >> g[0][i];
g[i][0] = g[0][i];
int c;
cin >> c;
g[i][0] = g[0][i] = c;
}
// 本题是按矩阵读入的不是按a,b,c方式读入的
for (int i = 1; i <= n; i++)
@ -40,7 +42,8 @@ int main() {
cin >> g[i][j];
// 利用prim计算最小生成树
printf("%d\n", prim());
prim();
cout << res << endl;
return 0;
}
Loading…
Cancel
Save