From 233acaaac61a149de775977ae2f598ee1a5921b8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=BB=84=E6=B5=B7?= <10402852@qq.com> Date: Tue, 19 Dec 2023 16:22:00 +0800 Subject: [PATCH] 'commit' --- TangDou/AcWing_TiGao/T5/QiWang/217.md | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/TangDou/AcWing_TiGao/T5/QiWang/217.md b/TangDou/AcWing_TiGao/T5/QiWang/217.md index e6157a0..367017c 100644 --- a/TangDou/AcWing_TiGao/T5/QiWang/217.md +++ b/TangDou/AcWing_TiGao/T5/QiWang/217.md @@ -67,14 +67,20 @@ $f(i)$:从$i$跳到$N$的期望长度。边界$f(N)=0$ ③ 所有贡献值累加和就是期望 -#### 期望的线性性质 -$$\large E(aX+bY)=aE(X)+bE(Y)$$ -根据本题题意我们可以进行递推 +**有向无环图** + +![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/202312191619342.png) + +事件发生的期望的线性性 $$\large E(aX+bY)=aE(X)+bE(Y)$$ + + +$f[i]$: 从 $i$ 跳到 $N$ 的期望长度 +边界: $f[N]=0$ +答案: $f[1]$ + +![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/202312191621193.png) -$f(i)$: 从 $i$ 跳到 $N$ 的期望长度 -边界: $f(N)=0$ -所求的答案: $f(1)$ 则有如下递推式: $\large f(i)=E(\frac{1}{k}(w_1+x_1)+\frac{1}{k}(w_2+x_2)+⋯+\frac{1}{k}(w_k+x_k)) \\