You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

119 lines
3.5 KiB

2 years ago
#include <bits/stdc++.h>
using namespace std;
// dijkstra算法模板及其用法
// https://www.cnblogs.com/yoyo-sincerely/p/6400906.html
// https://www.cnblogs.com/mycapple/archive/2012/08/12/2634227.html
/***************************************
* About: Dijkstra
* Author: Tanky Woo
* Blog: www.WuTianQi.com
***************************************/
const int maxnum = 100;
const int maxint = 999999;
// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prevArr[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) {
bool s[maxnum]; // 判断是否已存入该点到S集合中
for (int i = 1; i <= n; ++i) {
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if (dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1;
// 依次将未放入S集合的结点中取dist[]最小值的结点放入结合S中
// 一旦S包含了所有V中顶点dist就记录了从源点到所有其他顶点之间的最短路径长度
for (int i = 2; i <= n; ++i) {
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for (int j = 1; j <= n; ++j)
if ((!s[j]) && dist[j] < tmp) {
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for (int j = 1; j <= n; ++j)
if ((!s[j]) && c[u][j] < maxint) {
int newdist = dist[u] + c[u][j];
if (newdist < dist[j]) {
dist[j] = newdist;
prev[j] = u;
}
}
}
}
void searchPath(int *prev, int v, int u) {
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while (tmp != v) {
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for (int i = tot; i >= 1; --i)
if (i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
}
int main() {
freopen("../MiniPath/Dijkstra2.txt", "r", stdin);
// 各数组都从下标1开始
// 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度
// 初始化c[][]为maxint
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
c[i][j] = maxint;
for (int i = 1; i <= line; ++i) {
cin >> p >> q >> len;
if (len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p这样表示无向图
}
}
for (int i = 1; i <= n; ++i)
dist[i] = maxint;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j)
printf("%8d", c[i][j]);
printf("\n");
}
Dijkstra(n, 1, dist, prevArr, c);
// 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
// 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prevArr, 1, n);
}