You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
//拓扑排序+链接式前向星实现
|
|
|
|
|
/**
|
|
|
|
|
思路:其实就是求最小环。每个点的出度都是1,因此构成的图要么是一条链+一个环,要么是几个环,通过拓扑可以消去链状的部分,
|
|
|
|
|
对环的部分dfs算最小环即可。
|
|
|
|
|
*/
|
|
|
|
|
const int N = 2e5 + 10;
|
|
|
|
|
|
|
|
|
|
int n, idx, ans = INF;
|
|
|
|
|
int head[N]; //链表头数组
|
|
|
|
|
|
|
|
|
|
int in[N]; //入度数组
|
|
|
|
|
queue<int> q; //拓扑排序用的队列
|
|
|
|
|
|
|
|
|
|
struct Edge {
|
|
|
|
|
int to, next;
|
|
|
|
|
} edge[N]; //边数,也不可能多于结点数,因为这里是指每个结点引出的边数集合
|
|
|
|
|
|
|
|
|
|
bool st[N];
|
|
|
|
|
|
|
|
|
|
//从u向v连一条边,本题无权值概念,头插法
|
|
|
|
|
void add(int u, int v) {
|
|
|
|
|
// 进来先++是非常优美的操作,省去了初始化head[i]=-1!~~~,不过注意,遍历的方式有所变动,第二个条件是i,而不是i!=-1
|
|
|
|
|
edge[++idx].to = v; //因为idx默认值是,进来先++,就是第一个可用值是edge[1],edge[0]丢弃不使用的意思
|
|
|
|
|
edge[idx].next = head[u];
|
|
|
|
|
head[u] = idx;
|
|
|
|
|
//入度++
|
|
|
|
|
in[v]++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//拓扑排序
|
|
|
|
|
void topsort() {
|
|
|
|
|
//入度为0的结点入队列,进行拓扑排序
|
|
|
|
|
for (int i = 1; i <= n; i++) if (!in[i]) q.push(i);
|
|
|
|
|
|
|
|
|
|
//拓扑排序
|
|
|
|
|
while (!q.empty()) {
|
|
|
|
|
int u = q.front();
|
|
|
|
|
q.pop();
|
|
|
|
|
//不是环中结点
|
|
|
|
|
st[u] = true;
|
|
|
|
|
//遍历每条出边
|
|
|
|
|
for (int j = head[u]; j; j = edge[j].next) {
|
|
|
|
|
int y = edge[j].to;
|
|
|
|
|
if (!--in[y]) q.push(y);//在删除掉当前结点带来的入度后,是不是入度为0了,如果是将点y入队列
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
功能:求DAG中包含点u的环的长度
|
|
|
|
|
参数: u 结点
|
|
|
|
|
len 长度
|
|
|
|
|
*/
|
|
|
|
|
void dfs(int u, int len) {
|
|
|
|
|
//标识探测过了
|
|
|
|
|
st[u] = true;
|
|
|
|
|
//遍历所有u开头的边
|
|
|
|
|
for (int i = head[u]; i; i = edge[i].next) {
|
|
|
|
|
int y = edge[i].to;
|
|
|
|
|
//如果这个点还没有被探测过,那么,计算长度
|
|
|
|
|
if (!st[y]) dfs(y, ++len);
|
|
|
|
|
else { //到这里是发现了环!
|
|
|
|
|
ans = min(ans, len);
|
|
|
|
|
return; //第一次发现的就是终点
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n;
|
|
|
|
|
for (int u = 1; u <= n; u++) {
|
|
|
|
|
int x;
|
|
|
|
|
cin >> x;
|
|
|
|
|
add(u, x);
|
|
|
|
|
}
|
|
|
|
|
//拓扑排序
|
|
|
|
|
topsort();
|
|
|
|
|
|
|
|
|
|
//到这里,st[i]=false的就应该是环中结点,对环的部分dfs算最小环即可
|
|
|
|
|
for (int i = 1; i <= n; i++) if (!st[i]) dfs(i, 1);
|
|
|
|
|
cout << ans << endl;
|
|
|
|
|
}
|