You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
## 初等数论--同余方程--二元一次不定方程的通解形式
|
|
|
|
|
|
|
|
|
|
* 不定方程:变量个数>方程个数
|
|
|
|
|
|
|
|
|
|
若二元一次不定方程$ax + by = n$有解,$x_0, y_0$为它的一组整数解,则通解为:
|
|
|
|
|
|
|
|
|
|
$$\large
|
|
|
|
|
\left\{\begin{matrix}
|
|
|
|
|
x=x_0 + \frac{b}{(a,b)} \cdot t\\
|
|
|
|
|
y=y_0-\frac{a}{(a,b)}\cdot t
|
|
|
|
|
\end{matrix}\right.
|
|
|
|
|
\ \ \ \ t \in Z
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
证明:
|
|
|
|
|
* **该形式确实是二元一次方程的解**
|
|
|
|
|
将$x,y$代入原方程,得:
|
|
|
|
|
$\large \displaystyle a(x_0+\frac{b}{(a,b)}\cdot t) + b(y_0-\frac{a}{(a,b)}\cdot t)$
|
|
|
|
|
$\large \displaystyle =ax_0+a\frac{b}{(a,b)}\cdot t + by_0-b\frac{a}{(a,b)}\cdot t$
|
|
|
|
|
$\large \displaystyle =ax_0+by_0$
|
|
|
|
|
$\large \displaystyle =n$
|
|
|
|
|
|
|
|
|
|
* **二元一次不定方程的解都可以表达成这种形式**
|
|
|
|
|
已知
|
|
|
|
|
$$\large
|
|
|
|
|
\left\{\begin{matrix}
|
|
|
|
|
ax+by=n
|
|
|
|
|
\\
|
|
|
|
|
ax_0+by_0=n
|
|
|
|
|
\end{matrix}\right.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
联立方程,相减得:
|
|
|
|
|
$$\large a(x-x_0)+b(y-y_0)=0$$
|
|
|
|
|
$$\large a(x-x_0)=-b(y-y_0)$$
|
|
|
|
|
$$\large \frac{a}{(a,b)}(x-x_0)=-\frac{b}{(a,b)}(y-y_0)$$
|
|
|
|
|
|
|
|
|
|
$$\large \because \frac{a}{(a,b)}\nmid \frac{b}{(a,b)}$$
|
|
|
|
|
|
|
|
|
|
且
|
|
|
|
|
$$\large \frac{b}{(a,b)} | \frac{a}{(a,b)}(x-x_0)$$
|
|
|
|
|
|
|
|
|
|
$$\large \therefore \frac{b}{(a,b)} | x-x_0$$
|
|
|
|
|
即
|
|
|
|
|
$$\large x-x_0=\frac{b}{(a,b)}\cdot t$$
|
|
|
|
|
|
|
|
|
|
同理,$\large \displaystyle \frac{a}{(a,b)}|y-y_0$,即
|
|
|
|
|
$$\large y-y_0=-\frac{a}{(a,b)}\cdot t$$
|
|
|
|
|
|
|
|
|
|
$$\huge Q.E.D$$
|