You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
typedef long long LL;
|
|
|
|
|
|
|
|
|
|
const int N = 1e6 + 10;
|
|
|
|
|
const int MOD = 666623333;
|
|
|
|
|
|
|
|
|
|
//欧拉筛[线性筛法]
|
|
|
|
|
int primes[N], cnt; // primes[]存储所有素数
|
|
|
|
|
bool st[N]; // st[x]存储x是否被筛掉
|
|
|
|
|
void get_primes(int n) {
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
|
if (!st[i]) primes[cnt++] = i;
|
|
|
|
|
for (int j = 0; primes[j] <= n / i; j++) {
|
|
|
|
|
st[primes[j] * i] = true;
|
|
|
|
|
if (i % primes[j] == 0) break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LL l, r, ans;
|
|
|
|
|
//一维是[l,r]的映射位移,二维是一个动态数组,记录当前这个数字有哪些质数因子
|
|
|
|
|
vector<int> vec[N];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
//输入
|
|
|
|
|
cin >> l >> r;
|
|
|
|
|
//线性筛,筛出质数小因子范围
|
|
|
|
|
get_primes(sqrt(r));
|
|
|
|
|
|
|
|
|
|
//遍历每个小质数因子
|
|
|
|
|
for (int i = 0; i < cnt; i++) {
|
|
|
|
|
int p = primes[i];
|
|
|
|
|
//1、利用数组下标的位移,巧妙记录数据
|
|
|
|
|
//2、找到大于l的第一个p的倍数,然后,每次增加p,相当于找出p的整数倍
|
|
|
|
|
for (LL j = ((l - 1) / p + 1) * p; j <= r; j += p)
|
|
|
|
|
vec[j - l].push_back(p);
|
|
|
|
|
}
|
|
|
|
|
//如果还存在大的质数因子
|
|
|
|
|
for (LL i = l; i <= r; i++) {
|
|
|
|
|
LL tmp = i; //将i拷贝出来给了tmp,tmp要不断的减少啦,而i要保留。
|
|
|
|
|
|
|
|
|
|
LL phi = i; //欧拉函数值初始化为i
|
|
|
|
|
|
|
|
|
|
//当数字是i时,找到对应的质因子列表中的每一个质数
|
|
|
|
|
for (int p: vec[i - l]) {
|
|
|
|
|
//这里需要仔细理解欧拉函数的基本求法
|
|
|
|
|
phi = phi / p * (p - 1);
|
|
|
|
|
|
|
|
|
|
//如果还存在质数因子p,就除干净为止,因为欧拉函数是与因子的幂次无关,只与因子有关
|
|
|
|
|
while ((tmp % p) == 0) tmp /= p; //除干净为止
|
|
|
|
|
}
|
|
|
|
|
//如果还存在大的质数因子
|
|
|
|
|
if (tmp > 1)phi = phi / tmp * (tmp - 1);
|
|
|
|
|
|
|
|
|
|
//计算结果
|
|
|
|
|
ans = (ans + i - phi) % MOD;
|
|
|
|
|
}
|
|
|
|
|
//输出答案
|
|
|
|
|
cout << ans << endl;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|