|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
const int M = 10010;
|
|
|
|
|
int n, m;
|
|
|
|
|
|
|
|
|
|
int dist[N][2];
|
|
|
|
|
int cnt[N][2];
|
|
|
|
|
bool st[N][2];
|
|
|
|
|
|
|
|
|
|
// 链式前向星
|
|
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 本题需要一个三个属性的对象:最短距离d,最短、次短k,id:节点号
|
|
|
|
|
struct Node {
|
|
|
|
|
int d, k, id;
|
|
|
|
|
// 小顶堆需要重载大于号,大顶堆需要重载小于号
|
|
|
|
|
bool const operator>(Node b) const {
|
|
|
|
|
return d > b.d;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
void dijkstra(int S) {
|
|
|
|
|
memset(dist, 0x3f, sizeof dist);
|
|
|
|
|
memset(st, false, sizeof st);
|
|
|
|
|
memset(cnt, 0, sizeof cnt);
|
|
|
|
|
priority_queue<Node, vector<Node>, greater<>> pq; // 小顶堆
|
|
|
|
|
dist[S][0] = 0;
|
|
|
|
|
cnt[S][0] = 1;
|
|
|
|
|
pq.push({0, 0, S});
|
|
|
|
|
|
|
|
|
|
while (pq.size()) {
|
|
|
|
|
auto t = pq.top();
|
|
|
|
|
pq.pop();
|
|
|
|
|
int u = t.id;
|
|
|
|
|
int k = t.k;
|
|
|
|
|
|
|
|
|
|
if (st[u][k]) continue;
|
|
|
|
|
st[u][k] = true;
|
|
|
|
|
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
int d = dist[u][k] + w[i];
|
|
|
|
|
|
|
|
|
|
if (dist[v][0] > d) { // 比最短路还要短
|
|
|
|
|
dist[v][1] = dist[v][0]; // 最短降为次短
|
|
|
|
|
cnt[v][1] = cnt[v][0]; // 次短路数量被更新
|
|
|
|
|
pq.push({dist[v][1], 1, v}); // 次短被更新,次短入队列
|
|
|
|
|
|
|
|
|
|
dist[v][0] = d; // 替换最短路
|
|
|
|
|
cnt[v][0] = cnt[u][k]; // 替换最短路数量
|
|
|
|
|
pq.push({dist[v][0], 0, v}); // 最短路入队列
|
|
|
|
|
} else if (dist[v][0] == d) // 增加最短路的数量
|
|
|
|
|
cnt[v][0] += cnt[u][k];
|
|
|
|
|
else if (dist[v][1] > d) { // 替换次短路
|
|
|
|
|
dist[v][1] = d;
|
|
|
|
|
cnt[v][1] = cnt[u][k];
|
|
|
|
|
pq.push({dist[v][1], 1, v}); // 次短路入队列
|
|
|
|
|
} else if (dist[v][1] == d)
|
|
|
|
|
cnt[v][1] += cnt[u][k];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
int main() {
|
|
|
|
|
int T;
|
|
|
|
|
scanf("%d", &T);
|
|
|
|
|
while (T--) {
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
idx = 0;
|
|
|
|
|
while (m--) {
|
|
|
|
|
int a, b, c;
|
|
|
|
|
scanf("%d %d %d", &a, &b, &c);
|
|
|
|
|
add(a, b, c);
|
|
|
|
|
}
|
|
|
|
|
int S, F;
|
|
|
|
|
scanf("%d %d", &S, &F);
|
|
|
|
|
dijkstra(S);
|
|
|
|
|
int ans = cnt[F][0]; // 最短路
|
|
|
|
|
// 在正常处理完最短路和次短路后,在最后的逻辑中,增加本题的中特殊要求部分
|
|
|
|
|
if (dist[F][0] == dist[F][1] - 1) ans += cnt[F][1];
|
|
|
|
|
printf("%d\n", ans);
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|