You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

140 lines
5.5 KiB

2 years ago
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 2e5 + 5;
int n, m, q;
//输入的指令序列
struct Sort {
int op, l, r;
} s[N];
int a[N]; //原始数组
struct Node {
int l, r;
int tag; // 0:升序 1降序 2:初始值 lazy tag:懒标记 ,不想每次都做一遍,不查询不想做
int sum; //大于目标值的个数
} tr[N << 2];
//管辖区间长度
int len(int u) {
return tr[u].r - tr[u].l + 1;
}
//向父节点更新信息写成Node &的方式目前看来是最合理的办法
void pushup(Node &c, Node &a, Node &b) {
c.sum = a.sum + b.sum;
}
//更新lazy tag标识
void pushdown(int u) {
if (tr[u].tag == 2) return; //如果没有下传标识,啥也不干
tr[u << 1].sum = len(u << 1) * tr[u].tag; //左儿子区间内所有数字都要加上tr[u].tag,sum值为累加
tr[u << 1 | 1].sum = len(u << 1 | 1) * tr[u].tag; //右儿子区间内所有数字都要加上tr[u].tag,sum值为累加
tr[u << 1].tag = tr[u << 1 | 1].tag = tr[u].tag; //左右儿子都修改标识为tag,一次只更新一层
tr[u].tag = 2; //标识已处理
}
//构建线段树,x:当前两分取到的值用于建立线段树时判断每个叶子的初始值是1还是0
// a[l]>=x tr[u].sum=1
// a[l]<x tr[u].sum=0
// 本质上是记录了在区间内有多少个大于等于目标值的数字个数
void build(int u, int l, int r, int x) {
/*
{l,r}
01
01 tag=2,
xpushup0
*/
tr[u] = {l, r, 2, 0};
if (l == r) {
tr[u].sum = a[l] >= x; //大于等于x的都设置为1,小于x的设置为0
return;
}
//递归构建左右子树
int mid = (l + r) >> 1;
build(u << 1, l, mid, x), build(u << 1 | 1, mid + 1, r, x);
//向上更新统计信息
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
//查询区间内数字1的个数
int query(int u, int l, int r) {
if (l > tr[u].r || r < tr[u].l) return 0; //不在范围内的返回0
if (l <= tr[u].l && r >= tr[u].r) return tr[u].sum; //整个区间命中,返回统计信息
// 分裂前要记得 lazy tag下传
pushdown(u);
//分裂查询 左儿子+右儿子
return query(u << 1, l, r) + query(u << 1 | 1, l, r);
}
//区间修改
void modify(int u, int l, int r, int c) {
if (l > r) return; //特判边界,防止越界
//如果命中区间对区间的lazy tag和sum进行计算修改
if (l <= tr[u].l && r >= tr[u].r) {
tr[u].tag = c;
tr[u].sum = c * len(u);
return;
}
//没有命中区间,需要递归向左右儿子传递修改消息
pushdown(u);
//修改左区间
if (l <= tr[u << 1].r) modify(u << 1, l, r, c);
//修改右区间
if (r >= tr[u << 1 | 1].l) modify(u << 1 | 1, l, r, c);
//因为子区间内容修改,需要向父节点更新统计信息
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
bool check(int x) {
build(1, 1, n, x); //每次全新构建线段树
for (int i = 1; i <= m; i++) { //枚举每个排序动作
int l = s[i].l, r = s[i].r, op = s[i].op; // 0:升序1降序
int c = query(1, l, r); //查询l,r之间数字1的个数,也是大于等于x的个数
//算法本质忽略数字的正实值只记录大小关系大于等于记录为1小于记录为0
if (op) //降序
modify(1, l, l + c - 1, 1), modify(1, l + c, r, 0); //比x大的个数是c个如果是降序[l,l+c-1]修改为1表示区间都大于等于x,[l+c,r]修改为0表示这区间小于x
else //升序
modify(1, l, r - c, 0), modify(1, r - c + 1, r, 1); //比x大的个数是c个如果是升序[l,r-c]修改为0表示区间[l,r-c]都比x小后面[r-c+1,r]都大于等于x
}
//按上面的操作序列要求都模拟了一遍后如果q这个位置上的数位是1表示操作没有出现矛盾
return query(1, q, q) == 1;
}
int main() {
//加快读入
ios::sync_with_stdio(false), cin.tie(0);
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> a[i]; //第二行为 n 个整数,表示 1 到 n 的一个排列
for (int i = 1; i <= m; i++) cin >> s[i].op >> s[i].l >> s[i].r; //记录排序的动作与范围
cin >> q; //查询第q个位置上的数字是多少
int l = 1, r = n; //开始二分,因为原始序列的数字,是从[1,n]的不重复序列排列,所以有二分时上下限就是决定好的[1,n]
while (l <= r) {
int mid = (l + r) >> 1; //来尝试位置q上的数字是多大假设为mid
if (check(mid)) //此位置的值大于等于mid
l = mid + 1; //那么继续尝试l=mid+1,看看结果向右半区间走,也就是再大一点是不是可以
else
r = mid - 1; //向左半区间走,看看再小一点是不是可以
}
printf("%d\n", l - 1);
return 0;
}