|
|
|
|
## 背包问题
|
|
|
|
|
|
|
|
|
|
### 一、$01$背包基础题
|
|
|
|
|
**[$AcWing$ $2$. $01$背包问题](https://www.acwing.com/problem/content/2/)**
|
|
|
|
|
|
|
|
|
|
**[$AcWing$ $423$. 采药](https://www.acwing.com/problem/content/425/)**
|
|
|
|
|
|
|
|
|
|
**[$AcWing$ $1024$. 装箱问题](https://www.acwing.com/problem/content/1026/)**
|
|
|
|
|
|
|
|
|
|
二维状态表示
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 110;
|
|
|
|
|
const int M = 1010;
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
int w[N], v[N];
|
|
|
|
|
int f[N][M];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> m >> n;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
for (int j = 1; j <= m; j++) {
|
|
|
|
|
f[i][j] = f[i - 1][j]; // 不选
|
|
|
|
|
if (j >= v[i])
|
|
|
|
|
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]); // 选
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", f[n][m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
一维状态表示
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
int v[N], w[N];
|
|
|
|
|
int f[N];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> m >> n;
|
|
|
|
|
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
|
|
|
|
|
|
|
|
|
|
// 01背包模板
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
for (int j = m; j >= v[i]; j--)
|
|
|
|
|
f[j] = max(f[j], f[j - v[i]] + w[i]);
|
|
|
|
|
|
|
|
|
|
printf("%d\n", f[m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 二、二维费用$01$背包问题
|
|
|
|
|
**[$AcWing$ $1022$. 宠物小精灵之收服](https://www.acwing.com/problem/content/1024/)**
|
|
|
|
|
|
|
|
|
|
**[$AcWing$ $8$. 二维费用的背包问题](https://www.cnblogs.com/littlehb/p/15684961.html)**
|
|
|
|
|
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
const int N = 110; // 野生小精灵的数量
|
|
|
|
|
const int M1 = 1010; // 小智的精灵球数量
|
|
|
|
|
const int M2 = 510; // 皮卡丘的体力值
|
|
|
|
|
|
|
|
|
|
int n, m1, m2;
|
|
|
|
|
int f[M1][M2]; // 一维:精灵球数量,二维:皮卡丘的体力值,值:抓到的小精灵数量最大值
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> m1 >> m2 >> n;
|
|
|
|
|
m2--; // 留一滴血
|
|
|
|
|
|
|
|
|
|
// 二维费用01背包
|
|
|
|
|
// 降维需要将体积1、体积2倒序枚举
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
int v1, v2;
|
|
|
|
|
cin >> v1 >> v2;
|
|
|
|
|
for (int j = m1; j >= v1; j--)
|
|
|
|
|
for (int k = m2; k >= v2; k--)
|
|
|
|
|
f[j][k] = max(f[j][k], f[j - v1][k - v2] + 1); // 获利就是多了一个小精灵
|
|
|
|
|
}
|
|
|
|
|
// 最多收服多少个小精灵[在消耗精灵球、血极限的情况下,肯定抓的是最多的,这不废话吗]
|
|
|
|
|
printf("%d ", f[m1][m2]);
|
|
|
|
|
|
|
|
|
|
// 找到满足最大价值的所有状态里,第二维费用消耗最少的
|
|
|
|
|
int cost = m2;
|
|
|
|
|
for (int i = 0; i <= m2; i++) // 如果一个都不收服,则体力消耗最少,消耗值为0
|
|
|
|
|
if (f[m1][i] == f[m1][m2])
|
|
|
|
|
cost = min(cost, i);
|
|
|
|
|
|
|
|
|
|
// 收服最多个小精灵时皮卡丘的剩余体力值最大是多少
|
|
|
|
|
printf("%d\n", m2 + 1 - cost);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**总结**
|
|
|
|
|
- $01$背包,还是背一维的形式比较好,一来代码更短,二来空间更省,倒序就完了。
|
|
|
|
|
- 二维费用的$01$背包,简化版本的$01$背包模板就有了用武之地,因为三维数组可能会爆内存。
|
|
|
|
|
|
|
|
|
|
### 三、$01$背包之恰好装满
|
|
|
|
|
**[$AcWing$ $278$. 数字组合](https://www.acwing.com/problem/content/280/)**
|
|
|
|
|
|
|
|
|
|
**二维代码**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 110;
|
|
|
|
|
const int M = 10010;
|
|
|
|
|
int n, m;
|
|
|
|
|
int v;
|
|
|
|
|
int f[N][M];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i <= n; i++) f[i][0] = 1; // base case
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
cin >> v;
|
|
|
|
|
for (int j = 1; j <= m; j++) {
|
|
|
|
|
// 从前i-1个物品中选择,装满j这么大的空间,假设方案数是5个
|
|
|
|
|
// 那么,在前i个物品中选择,装满j这么大的空间,方案数最少也是5个
|
|
|
|
|
// 如果第i个物品,可以选择,那么可能使得最终的选择方案数增加
|
|
|
|
|
f[i][j] = f[i - 1][j];
|
|
|
|
|
// 增加多少呢?前序依赖是:f[i - 1][j - v]
|
|
|
|
|
if (j >= v) f[i][j] += f[i - 1][j - v];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 输出结果
|
|
|
|
|
printf("%d\n", f[n][m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**一维代码**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 10010;
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
int v;
|
|
|
|
|
int f[N]; // 在前i个物品,体积是j的情况下,恰好装满的方案数
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
// 体积恰好j, f[0]=1, 其余是0
|
|
|
|
|
f[0] = 1;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
cin >> v;
|
|
|
|
|
for (int j = m; j >= v; j--)
|
|
|
|
|
f[j] += f[j - v];
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", f[m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
### 四、完全背包
|
|
|
|
|
**[$AcWing$ $3$. 完全背包问题](https://www.acwing.com/problem/content/3/)**
|
|
|
|
|
|
|
|
|
|
**二维写法**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
int n, m;
|
|
|
|
|
int f[N][N];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
int v, w;
|
|
|
|
|
cin >> v >> w;
|
|
|
|
|
for (int j = 1; j <= m; j++) {
|
|
|
|
|
f[i][j] = f[i - 1][j];
|
|
|
|
|
if (j >= v)
|
|
|
|
|
f[i][j] = max(f[i][j], f[i][j - v] + w);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", f[n][m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
**一维解法**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
int n, m;
|
|
|
|
|
int f[N];
|
|
|
|
|
|
|
|
|
|
// 完全背包问题
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
int v, w;
|
|
|
|
|
cin >> v >> w;
|
|
|
|
|
for (int j = v; j <= m; j++)
|
|
|
|
|
f[j] = max(f[j], f[j - v] + w);
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", f[m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 五、完全背包之恰好装满
|
|
|
|
|
**[$AcWing$ $1023$. 买书](https://www.acwing.com/problem/content/1025/)**
|
|
|
|
|
|
|
|
|
|
**二维数组**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
int v[5] = {0, 10, 20, 50, 100};
|
|
|
|
|
int f[5][N];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
int m;
|
|
|
|
|
cin >> m;
|
|
|
|
|
// 前0种物品,体积是0的情况下只有一种方案
|
|
|
|
|
f[0][0] = 1;
|
|
|
|
|
for (int i = 1; i <= 4; i++)
|
|
|
|
|
for (int j = 0; j <= m; j++) {
|
|
|
|
|
f[i][j] = f[i - 1][j];
|
|
|
|
|
if (v[i] <= j) f[i][j] += f[i][j - v[i]];
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", f[4][m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
**一维数组**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1010;
|
|
|
|
|
int v[5] = {0, 10, 20, 50, 100};
|
|
|
|
|
int f[N];
|
|
|
|
|
|
|
|
|
|
// 体积限制是恰好是,因此需要初始化f[0][0]为合法解1,其他位置为非法解0。
|
|
|
|
|
int main() {
|
|
|
|
|
int m;
|
|
|
|
|
cin >> m;
|
|
|
|
|
// 前0种物品,体积是0的情况下只有一种方案
|
|
|
|
|
f[0] = 1;
|
|
|
|
|
for (int i = 1; i <= 4; i++)
|
|
|
|
|
for (int j = v[i]; j <= m; j++)
|
|
|
|
|
f[j] += f[j - v[i]];
|
|
|
|
|
// 输出
|
|
|
|
|
printf("%d\n", f[m]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
**总结**
|
|
|
|
|
① 完全背包的经典优化是哪个混蛋想出来的,真它娘的是个人才。
|
|
|
|
|
② 对比$01$背包与完全背包的代码,发现就是一正一反。
|
|
|
|
|
③ 完全背包求最大值与恰好装满的方案数,除了初始化不同,其它的一样。$f[i][0]=1$这样的初始化,我也服了~
|
|
|
|
|
④ 背包问题这样的经典代码,除了理解算法原理,会推导外,重点还是模板背诵。用模板知识解决实际问题才是考试的本质,虽然考试不一定能选拔出能力强的人才,但能选拔出做过这方面训练的人员。
|