You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
## [$AcWing$ $126$. 最大的和](https://www.acwing.com/problem/content/description/128/)
|
|
|
|
|
|
|
|
|
|
#### 关键字
|
|
|
|
|
|
|
|
|
|
**最大子段和**,有一维和二维两种情况
|
|
|
|
|
一维:$O(N)$
|
|
|
|
|
二维:$O(n^3)$
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
|
|
|
|
|
给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为 $1×1$ 或更大的连续子阵列。
|
|
|
|
|
|
|
|
|
|
矩形的总和是该矩形中所有元素的总和。
|
|
|
|
|
|
|
|
|
|
在这个问题中,具有最大和的子矩形被称为最大子矩形。
|
|
|
|
|
|
|
|
|
|
例如,下列数组:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
0 -2 -7 0
|
|
|
|
|
9 2 -6 2
|
|
|
|
|
-4 1 -4 1
|
|
|
|
|
-1 8 0 -2
|
|
|
|
|
```
|
|
|
|
|
其最大子矩形为:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
9 2
|
|
|
|
|
-4 1
|
|
|
|
|
-1 8
|
|
|
|
|
```
|
|
|
|
|
它拥有最大和 $15$。
|
|
|
|
|
|
|
|
|
|
**输入格式**
|
|
|
|
|
输入中将包含一个 $N×N$ 的整数数组。
|
|
|
|
|
|
|
|
|
|
第一行只输入一个整数 $N$,表示方形二维数组的大小。
|
|
|
|
|
|
|
|
|
|
从第二行开始,输入由空格和换行符隔开的 $N^2$ 个整数,它们即为二维数组中的 $N^2$ 个元素,输入顺序从二维数组的第一行开始向下逐行输入,同一行数据从左向右逐个输入。
|
|
|
|
|
|
|
|
|
|
数组中的数字会保持在 $[−127,127]$ 的范围内。
|
|
|
|
|
|
|
|
|
|
**输出格式**
|
|
|
|
|
输出一个整数,代表最大子矩形的总和。
|
|
|
|
|
|
|
|
|
|
**数据范围**
|
|
|
|
|
$1≤N≤100$
|
|
|
|
|
|
|
|
|
|
**输入样例**:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
4
|
|
|
|
|
0 -2 -7 0
|
|
|
|
|
9 2 -6 2
|
|
|
|
|
-4 1 -4 1
|
|
|
|
|
-1 8 0 -2
|
|
|
|
|
```
|
|
|
|
|
**输出样例**:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
15
|
|
|
|
|
```
|
|
|
|
|
### 二、一维情况
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
**测试用例**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
7
|
|
|
|
|
5 -2 -4 8 -1 5 4
|
|
|
|
|
```
|
|
|
|
|
**输出**
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
16
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
const int N = 110;
|
|
|
|
|
int a[N], s[N];
|
|
|
|
|
int f[N];
|
|
|
|
|
/*
|
|
|
|
|
7
|
|
|
|
|
5 -2 -4 8 -1 5 4
|
|
|
|
|
|
|
|
|
|
输出:
|
|
|
|
|
16
|
|
|
|
|
*/
|
|
|
|
|
int main() {
|
|
|
|
|
int n;
|
|
|
|
|
cin >> n;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
cin >> a[i];
|
|
|
|
|
s[i] = s[i - 1] + a[i]; // 累加出前缀和
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int res = -INF;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
f[i] = max(f[i - 1], 0) + a[i];
|
|
|
|
|
res = max(res, f[i]);
|
|
|
|
|
}
|
|
|
|
|
cout << res << endl;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 三、二维情况
|
|
|
|
|
左上角和右下角两个点可以确定一个矩形。枚举这两个点要用$4$个$for$循环 如果 **用二维前缀和优化**,那么这个做法的复杂度的就是$O(n^4)$。
|
|
|
|
|
|
|
|
|
|
其实这个方案可以优化,那就是 **不枚举点**。
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以我们可以 **利用前缀和数组表示出每个色块表示的值**,然后做类似找一维数组最大连续和的操作。这样来 **枚举出最优矩形**。
|
|
|
|
|
|
|
|
|
|
枚举边界要用$3$个$for$,复杂度为 $O(n^3)$
|
|
|
|
|
|
|
|
|
|
#### $Code$
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
const int N = 110;
|
|
|
|
|
int g[N][N];
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
int n;
|
|
|
|
|
cin >> n;
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
for (int j = 1; j <= n; j++) {
|
|
|
|
|
cin >> g[i][j];
|
|
|
|
|
// 累加出并记录同一列的前缀和
|
|
|
|
|
g[i][j] += g[i - 1][j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int res = -INF;
|
|
|
|
|
|
|
|
|
|
// 枚举边界1,2
|
|
|
|
|
for (int i = 1; i <= n; i++) // 起始行
|
|
|
|
|
for (int j = i; j <= n; j++) { // 终止行
|
|
|
|
|
// 枚举边界p
|
|
|
|
|
int last = 0;
|
|
|
|
|
for (int k = 1; k <= n; k++) {
|
|
|
|
|
last = max(last, 0) + g[j][k] - g[i - 1][k];
|
|
|
|
|
res = max(res, last);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cout << res << endl;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|