You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
##[$P4084$ $Barn$ $Painting$ $G$](https://www.luogu.com.cn/problem/P4084)
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
给定一颗$N$个节点组成的树,$3$种颜色,其中$K$个节点已染色,要求任意两相邻节点颜色不同,求合法染色方案数。
|
|
|
|
|
|
|
|
|
|
### 二、解题思路
|
|
|
|
|
|
|
|
|
|
树形计数类$DP$
|
|
|
|
|
|
|
|
|
|
**状态表示**
|
|
|
|
|
设$f[u][j]$表示将$u$染色为$j$时,$u$这棵子树的方案数
|
|
|
|
|
|
|
|
|
|
**状态转移**
|
|
|
|
|
$$\large f[u][j]=\prod_{v \in son[u]} \sum_{k \neq j}f[v][k]$$
|
|
|
|
|
|
|
|
|
|
**初始化**
|
|
|
|
|
$f[u][j]=1$
|
|
|
|
|
特别的,当$u$已被染色为$j$时,$f[u][k]=0(k!=t)$。
|
|
|
|
|
|
|
|
|
|
**答案**
|
|
|
|
|
$\large f[1][0]+f[1][1]+f[1][2]$
|
|
|
|
|
|
|
|
|
|
**小结**
|
|
|
|
|
树上$DP$求方案数的特点是对于$u$求出不包含$u$的子树方案,因为子树间互不相干,所以将$u$的子节点的子树 **所有方案之和** 乘起来就是 $u$子树的方案数 了。对于$u=root$,就是我们要求的总方案数。请注意其中加法原理和乘法原理的穿插运用。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 三、实现代码
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
typedef long long LL;
|
|
|
|
|
const LL mod = 1e9 + 7;
|
|
|
|
|
const int N = 1e5 + 10, M = N << 1;
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
int color[N]; // 值域1~3
|
|
|
|
|
|
|
|
|
|
// 链式前向星
|
|
|
|
|
int e[M], h[N], idx, ne[M];
|
|
|
|
|
void add(int a, int b) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LL f[N][4]; // 设f[u][j]表示将u染色为j时,u这棵子树的方案数
|
|
|
|
|
int st[N]; // 是不是访问过
|
|
|
|
|
|
|
|
|
|
void dfs(int u) {
|
|
|
|
|
st[u] = 1; // 标识已访问
|
|
|
|
|
// 初始化
|
|
|
|
|
if (color[u])
|
|
|
|
|
// 当某个节点被指定上色后,那么该节点另外两种颜色的方案数为0
|
|
|
|
|
// 例如:当点u被指定上色2时:f[u][1]=0,f[u][3]=0 (因为无法上色1和3)
|
|
|
|
|
f[u][color[u]] = 1;
|
|
|
|
|
else
|
|
|
|
|
f[u][1] = f[u][2] = f[u][3] = 1; // 三种颜色都可以染
|
|
|
|
|
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (st[v]) continue;
|
|
|
|
|
dfs(v);
|
|
|
|
|
// 对于每个节点,因为不能于子节点上色相同
|
|
|
|
|
f[u][1] = (f[u][1] * (f[v][2] + f[v][3]) % mod) % mod;
|
|
|
|
|
f[u][2] = (f[u][2] * (f[v][1] + f[v][3]) % mod) % mod;
|
|
|
|
|
f[u][3] = (f[u][3] * (f[v][1] + f[v][2]) % mod) % mod;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
int a, b;
|
|
|
|
|
cin >> a >> b;
|
|
|
|
|
add(a, b), add(b, a);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (m--) {
|
|
|
|
|
int u, c;
|
|
|
|
|
cin >> u >> c;
|
|
|
|
|
color[u] = c; // u节点被染过色,颜色为c
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dfs(1);
|
|
|
|
|
|
|
|
|
|
printf("%lld\n", (f[1][1] + f[1][2] + f[1][3]) % mod);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|