|
|
|
|
## [$AcWing$ $397$. 逃不掉的路
|
|
|
|
|
|
|
|
|
|
[题目传送门](https://www.acwing.com/problem/content/description/399/)
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
|
|
|
|
|
现代社会,路是必不可少的。任意两个城镇都有路相连,而且往往不止一条。但有些路连年被各种$XXOO$,走着很不爽。按理说条条大路通罗马,大不了绕行其他路呗——可小撸却发现:从$a$城到$b$城不管怎么走,总有一些逃不掉的必经之路。
|
|
|
|
|
|
|
|
|
|
他想请你计算一下,$a$到$b$的所有路径中,有几条路是逃不掉的?
|
|
|
|
|
|
|
|
|
|
**输入格式**
|
|
|
|
|
|
|
|
|
|
第一行是$n$和$m$,用空格隔开。
|
|
|
|
|
|
|
|
|
|
接下来$m$行,每行两个整数$x$和$y$,用空格隔开,表示$x$城和$y$城之间有一条长为$1$的 **双向路**。
|
|
|
|
|
|
|
|
|
|
第$m+2$行是$q$。接下来$q$行,每行两个整数$a$和$b$,用空格隔开,表示一次询问。
|
|
|
|
|
|
|
|
|
|
**输出格式**
|
|
|
|
|
|
|
|
|
|
对于每次询问,输出一个正整数,表示$a$城到$b$城必须经过几条路。
|
|
|
|
|
|
|
|
|
|
### 二、题目简析
|
|
|
|
|
时间复杂度:$O(nlogn)$
|
|
|
|
|
求 $a$ 到 $b$ 的所有路径中的必经之路,那我们来想一想,为什么会有多条路径呢?
|
|
|
|
|
当然就是下面这种情况了
|
|
|
|
|
<center><img src='https://ftp.bmp.ovh/imgs/2020/11/5ee89b418317dd3c.png'></center>
|
|
|
|
|
|
|
|
|
|
那为什么会出现下面这种情况呢?
|
|
|
|
|
|
|
|
|
|
**当然是因为有环出现了**,才会出现多条路径
|
|
|
|
|
|
|
|
|
|
也就是说,环内的点,**一定不会有必经之路,因为至少也有顺时针逆时针两条路**
|
|
|
|
|
|
|
|
|
|
那么什么边才是必经之路呢?
|
|
|
|
|
|
|
|
|
|
就是 **环和环之间的路** 肯定就是 **必经之路** 了
|
|
|
|
|
|
|
|
|
|
好,那就把每个环缩成一个点,新图中的边就必然是必经之路了
|
|
|
|
|
|
|
|
|
|
而这个没有环的新图就成了一棵树
|
|
|
|
|
|
|
|
|
|
那怎么求两点经过的边有多少条呢?
|
|
|
|
|
|
|
|
|
|
这不就是 **树上最短路** 吗
|
|
|
|
|
|
|
|
|
|
我用了$lca$来求
|
|
|
|
|
|
|
|
|
|
```c++
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
const int N = 4e5 + 10, M = N << 2; //因为需要装无向图,所以N=2e5,又因为有新图有旧图,都保存到一个数组中,所以需要再乘以2
|
|
|
|
|
|
|
|
|
|
//链式前向星
|
|
|
|
|
int e[M], h1[N], h2[N], idx, w[M], ne[M];
|
|
|
|
|
void add(int h[], int a, int b, int c = 0) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int f[N][16];
|
|
|
|
|
int depth[N], dist[N];
|
|
|
|
|
|
|
|
|
|
void bfs() {
|
|
|
|
|
// 1号点是源点
|
|
|
|
|
depth[1] = 1;
|
|
|
|
|
queue<int> q;
|
|
|
|
|
q.push(1);
|
|
|
|
|
while (q.size()) {
|
|
|
|
|
int u = q.front();
|
|
|
|
|
q.pop();
|
|
|
|
|
for (int i = h2[u]; ~i; i = ne[i]) {
|
|
|
|
|
int j = e[i];
|
|
|
|
|
if (!depth[j]) {
|
|
|
|
|
q.push(j);
|
|
|
|
|
depth[j] = depth[u] + 1;
|
|
|
|
|
dist[j] = dist[u] + w[i];
|
|
|
|
|
f[j][0] = u;
|
|
|
|
|
for (int k = 1; k <= 15; k++) f[j][k] = f[f[j][k - 1]][k - 1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//最近公共祖先
|
|
|
|
|
int lca(int a, int b) {
|
|
|
|
|
if (depth[a] < depth[b]) swap(a, b);
|
|
|
|
|
for (int k = 15; k >= 0; k--)
|
|
|
|
|
if (depth[f[a][k]] >= depth[b]) a = f[a][k];
|
|
|
|
|
if (a == b) return a;
|
|
|
|
|
for (int k = 15; k >= 0; k--)
|
|
|
|
|
if (f[a][k] != f[b][k]) a = f[a][k], b = f[b][k];
|
|
|
|
|
return f[a][0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//边双连通分量
|
|
|
|
|
int dfn[N], low[N], ts, stk[N], top;
|
|
|
|
|
vector<int> dcc[N]; //边双中有哪些原始点
|
|
|
|
|
int id[N], dcc_cnt; //原始点x属于哪个边双连通分量,dcc_cnt指边双连通分量个数
|
|
|
|
|
int is_bridge[M]; //记录哪些边是割边
|
|
|
|
|
void tarjan(int u, int fa) {
|
|
|
|
|
dfn[u] = low[u] = ++ts;
|
|
|
|
|
stk[++top] = u;
|
|
|
|
|
for (int i = h1[u]; ~i; i = ne[i]) {
|
|
|
|
|
int j = e[i];
|
|
|
|
|
if (!dfn[j]) {
|
|
|
|
|
tarjan(j, i);
|
|
|
|
|
low[u] = min(low[u], low[j]);
|
|
|
|
|
if (dfn[u] < low[j]) is_bridge[i] = is_bridge[i ^ 1] = true; //记录割边
|
|
|
|
|
} else if (i != (fa ^ 1))
|
|
|
|
|
low[u] = min(low[u], dfn[j]);
|
|
|
|
|
}
|
|
|
|
|
if (dfn[u] == low[u]) {
|
|
|
|
|
++dcc_cnt; //边双数量+1
|
|
|
|
|
int x;
|
|
|
|
|
do {
|
|
|
|
|
x = stk[top--];
|
|
|
|
|
id[x] = dcc_cnt; // 记录点与边双关系
|
|
|
|
|
dcc[dcc_cnt].push_back(x); // 记录边双中有哪些点
|
|
|
|
|
} while (x != u);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int n, m, q;
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
memset(h1, -1, sizeof h1); // h1是原图的表头
|
|
|
|
|
memset(h2, -1, sizeof h2); // h2是新生成的缩完点的图表头
|
|
|
|
|
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
|
|
|
|
|
|
|
//原图
|
|
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
|
|
int a, b;
|
|
|
|
|
scanf("%d %d", &a, &b);
|
|
|
|
|
add(h1, a, b), add(h1, b, a);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//用tarjan来缩点,将边双连通分量缩点
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (!dfn[i]) tarjan(i, -1);
|
|
|
|
|
|
|
|
|
|
//将新图建出来
|
|
|
|
|
for (int u = 1; u <= n; u++)
|
|
|
|
|
for (int i = h1[u]; ~i; i = ne[i]) {
|
|
|
|
|
int j = e[i];
|
|
|
|
|
if (id[u] != id[j])
|
|
|
|
|
add(h2, id[u], id[j]), add(h2, id[j], id[u]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//随便找个存在的号作为根节点,预处理出每个点到根节点的距离
|
|
|
|
|
bfs();
|
|
|
|
|
|
|
|
|
|
scanf("%d", &q); // q次询问
|
|
|
|
|
for (int i = 1; i <= q; i++) {
|
|
|
|
|
int a, b;
|
|
|
|
|
scanf("%d %d", &a, &b);
|
|
|
|
|
a = id[a], b = id[b];
|
|
|
|
|
printf("%d\n", depth[a] + depth[b] - depth[lca(a, b)] * 2); //这就很显然了
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|