You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
typedef long long LL;
|
|
|
|
|
const int N = 50010;
|
|
|
|
|
|
|
|
|
|
//线性筛法求莫比乌斯函数(枚举约数)
|
|
|
|
|
int mu[N], sum[N]; // 莫比乌斯函数的前缀和
|
|
|
|
|
int primes[N], cnt;
|
|
|
|
|
bool st[N];
|
|
|
|
|
void get_mobius(LL n) {
|
|
|
|
|
mu[1] = 1;
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
|
if (!st[i]) {
|
|
|
|
|
primes[cnt++] = i;
|
|
|
|
|
mu[i] = -1; //奇数个质因子,现在只有1个质因子,所以函数值是-1
|
|
|
|
|
}
|
|
|
|
|
for (int j = 0; primes[j] * i <= n; j++) {
|
|
|
|
|
int t = primes[j] * i;
|
|
|
|
|
st[t] = true; //把t筛掉
|
|
|
|
|
|
|
|
|
|
// t里有primes[j],而i里如果还有一个primes[j],那么最少有2个及以上的primes[j],根据mobius函数定义,此时函数值为0
|
|
|
|
|
if (i % primes[j] == 0) {
|
|
|
|
|
mu[t] = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
mu[t] = -mu[i];
|
|
|
|
|
//因为执行到这里primes[j]这个质因子只有1个,所以整个莫比乌斯函数里有没有某个质因子的个数大于1个,取决于i的质因子个数
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 维护莫比乌斯函数前缀和
|
|
|
|
|
for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + mu[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
//筛法求莫比乌斯函数
|
|
|
|
|
get_mobius(N - 1);
|
|
|
|
|
|
|
|
|
|
int T;
|
|
|
|
|
cin >> T;
|
|
|
|
|
|
|
|
|
|
while (T--) {
|
|
|
|
|
int a, b, d;
|
|
|
|
|
cin >> a >> b >> d;
|
|
|
|
|
//套路啊,满满的套路,直接先用最大公约数a/gcd(a,b)=a',b/gcd(a,b)=b',映射到a',b'
|
|
|
|
|
a /= d, b /= d;
|
|
|
|
|
|
|
|
|
|
// n为 min(a', b')
|
|
|
|
|
int n = min(a, b);
|
|
|
|
|
|
|
|
|
|
LL res = 0;
|
|
|
|
|
|
|
|
|
|
// l r, 是每一段的左右边界
|
|
|
|
|
// 每次只能取较小的那个上界作为这一段的右端点r
|
|
|
|
|
// 然后下次迭代时下一段的左端点就是r + 1
|
|
|
|
|
for (int l = 1, r; l <= n; l = r + 1) { //分块大法
|
|
|
|
|
r = min(n, min(a / (a / l), b / (b / l)));
|
|
|
|
|
res += (sum[r] - sum[l - 1]) * (LL)(a / l) * (b / l);
|
|
|
|
|
}
|
|
|
|
|
printf("%lld\n", res);
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|