You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
思路:其实就是求最小环。每个点的出度都是1,因此构成的图要么是一条链+一个环,要么是几个环,
|
|
|
|
|
通过拓扑可以消去链状的部分,对环的部分dfs算最小环即可。
|
|
|
|
|
*/
|
|
|
|
|
const int N = 2e5 + 10;
|
|
|
|
|
|
|
|
|
|
int n; //n个同学
|
|
|
|
|
int ans = 0x3f3f3f3f; //答案,初始值为极大值
|
|
|
|
|
vector<int> edge[N]; //邻接表
|
|
|
|
|
int ind[N]; //入度数组
|
|
|
|
|
queue<int> q; //拓扑排序用的队列
|
|
|
|
|
bool st[N]; //是不是已经被排除掉
|
|
|
|
|
|
|
|
|
|
//拓扑排序[这是一个拓扑排序的模板,但里面扩充了本题的st[i]数组标识 ]
|
|
|
|
|
void topsort() {
|
|
|
|
|
//入度为0的结点入队列
|
|
|
|
|
for (int i = 1; i <= n; i++) if (!ind[i]) q.push(i);
|
|
|
|
|
//图的广度优先遍历
|
|
|
|
|
while (!q.empty()) {
|
|
|
|
|
int x = q.front();
|
|
|
|
|
q.pop();
|
|
|
|
|
//标识非环中结点
|
|
|
|
|
st[x] = true;
|
|
|
|
|
//遍历每条出边
|
|
|
|
|
for (int i = 0; i < edge[x].size(); i++) {
|
|
|
|
|
int y = edge[x][i];
|
|
|
|
|
ind[y]--;
|
|
|
|
|
if (!ind[y]) q.push(y);//在删除掉当前结点带来的入度后,是不是入度为0了,如果是将点y入队列
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
功能:求图中包含点u的环的长度
|
|
|
|
|
参数: u 结点
|
|
|
|
|
len 长度
|
|
|
|
|
*/
|
|
|
|
|
void dfs(int u, int len) {
|
|
|
|
|
//标识探测过了
|
|
|
|
|
st[u] = true;
|
|
|
|
|
//遍历所有u开头的边
|
|
|
|
|
for (int y:edge[u]) {
|
|
|
|
|
//如果这个点还没有被探测过,那么继续探索
|
|
|
|
|
if (!st[y]) dfs(y, ++len);
|
|
|
|
|
else { //到这里是发现了环!因为现在在邻接表中只剩下了环,其它的链路都被拓扑排序干掉了,
|
|
|
|
|
// 结果还是出现访问过的结点,就肯定是发现环了
|
|
|
|
|
ans = min(ans, len); //这是递归的出口.此处和其它的递归不一样啊,递归出口居然在代码区,
|
|
|
|
|
// 而不是在一进递归的位置~
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
//创建有向图
|
|
|
|
|
cin >> n;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
int u;
|
|
|
|
|
cin >> u;
|
|
|
|
|
//邻接表方式
|
|
|
|
|
edge[i].push_back(u);
|
|
|
|
|
//入度++
|
|
|
|
|
ind[u]++;
|
|
|
|
|
}
|
|
|
|
|
//拓扑排序
|
|
|
|
|
topsort();
|
|
|
|
|
|
|
|
|
|
//到这里,st[i]=false的就应该是环中结点,对环的部分dfs算最小环即可
|
|
|
|
|
for (int i = 1; i <= n; i++) if (!st[i]) dfs(i, 1);
|
|
|
|
|
cout << ans << endl;
|
|
|
|
|
}
|