You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
|
|
|
|
|
const int mod = 1e9 + 7; // 尽量这样定义mod ,减少非必要的麻烦
|
|
|
|
|
|
|
|
|
|
// 快速幂
|
|
|
|
|
int qmi(int a, int b) {
|
|
|
|
|
int res = 1;
|
|
|
|
|
a %= mod;
|
|
|
|
|
while (b) {
|
|
|
|
|
if (b & 1) res = res * a % mod;
|
|
|
|
|
b >>= 1;
|
|
|
|
|
a = a * a % mod;
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vector<int> p; // 将m拆分成的质数因子序列p
|
|
|
|
|
|
|
|
|
|
signed main() {
|
|
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
|
|
freopen("SpareTire.in", "r", stdin);
|
|
|
|
|
#endif
|
|
|
|
|
int n, m;
|
|
|
|
|
|
|
|
|
|
int Six = qmi(6, mod - 2); // 因为需要用到 % 1e9+7 下6的逆元,用费马小定理+快速幂求逆元
|
|
|
|
|
int Two = qmi(2, mod - 2); // 因为需要用到 % 1e9+7 下2的逆元,用费马小定理+快速幂求逆元
|
|
|
|
|
|
|
|
|
|
while (cin >> n >> m) {
|
|
|
|
|
// 所结果拆分为平方和公式,等差数列两部分
|
|
|
|
|
// 注意:现在求的是整体值,还没有去掉不符合条件的数字
|
|
|
|
|
int first = n * (n + 1) % mod * (2 * n + 1) % mod * Six % mod;
|
|
|
|
|
int second = n * (n + 1) % mod * Two % mod;
|
|
|
|
|
int res = (first + second) % mod;
|
|
|
|
|
|
|
|
|
|
// 对m进行质因子分解
|
|
|
|
|
int t = m; // 复制出来
|
|
|
|
|
for (int i = 2; i * i <= t; i++) {
|
|
|
|
|
if (t % i == 0) {
|
|
|
|
|
p.push_back(i);
|
|
|
|
|
while (t % i == 0) t = t / i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (t > 1) p.push_back(t);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
容斥原理
|
|
|
|
|
例如有3个因子,那么1<<3=8(1000二进制)
|
|
|
|
|
然后i从1开始枚举直到7(111二进制),i中二进制的位置1表式取这个位置的因子
|
|
|
|
|
例如i=3(11二进制) 表示取前两个因子,i=5(101)表示取第1个和第3个的因子
|
|
|
|
|
*/
|
|
|
|
|
int s = 0;
|
|
|
|
|
for (int i = 1; i < (1 << p.size()); i++) {
|
|
|
|
|
int cnt = 0, t = 1;
|
|
|
|
|
for (int j = 0; j < p.size(); j++)
|
|
|
|
|
if ((i >> j) & 1) {
|
|
|
|
|
cnt++;
|
|
|
|
|
t *= p[j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 比如找到了s=6=2*3,需要知道s是奇数个,还是偶数个因子
|
|
|
|
|
// n/s:范围内6的倍数有多少个
|
|
|
|
|
int k = n / t;
|
|
|
|
|
int x = k * (k + 1) % mod * (2 * k + 1) % mod * Six % mod;
|
|
|
|
|
x = x * t % mod * t % mod; // 乘上t^2
|
|
|
|
|
// 还需要累加等差数列部分
|
|
|
|
|
// 首项是t,项数是k,末项 t*k
|
|
|
|
|
x = (x + k * (t + t * k) % mod * Two % mod) % mod;
|
|
|
|
|
|
|
|
|
|
if (cnt & 1)
|
|
|
|
|
s = (s + x) % mod;
|
|
|
|
|
else
|
|
|
|
|
s = (s - x + mod) % mod;
|
|
|
|
|
}
|
|
|
|
|
// 输出
|
|
|
|
|
cout << (res - s + mod) % mod << endl;
|
|
|
|
|
}
|
|
|
|
|
}
|