|
|
|
|
## [指数循环节&欧拉降幂](https://blog.csdn.net/acdreamers/article/details/8236942)
|
|
|
|
|
|
|
|
|
|
### 一、问题
|
|
|
|
|
比如计算 $$\large A^B \ \% \ C$$
|
|
|
|
|
|
|
|
|
|
其中$1 \leq B \leq 10^{20000000}$ 和 $1 \leq C \leq 10^6$
|
|
|
|
|
|
|
|
|
|
$b$过大,使用暴力和快速幂是无法求解的。
|
|
|
|
|
|
|
|
|
|
### 二、扩展欧拉定理公式
|
|
|
|
|
- ① 当$B \geq \phi(C)$时:
|
|
|
|
|
$$\large A^B \% C = A^{B \% \phi(C)+\phi(C)} \% C $$
|
|
|
|
|
> 这是广义降幂公式,不要求$A$与$C$互质!
|
|
|
|
|
|
|
|
|
|
- ② 当$B<φ(C)$时,就没有降幂的必要了
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 三、练习题
|
|
|
|
|
|
|
|
|
|
**[$P5091$ 【模板】扩展欧拉定理](https://www.luogu.com.cn/problem/P5091)**
|
|
|
|
|
|
|
|
|
|
**题意**:
|
|
|
|
|
给定$A$,$B$和$C$的值,求$A^B \ mod \ C$的值。其中$1 \leq A,C \leq 10^9,1 \leq B \leq 10 ^{1000000}$。
|
|
|
|
|
|
|
|
|
|
**特点**
|
|
|
|
|
欧拉降幂,模板题
|
|
|
|
|
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
const int N = 2000010;
|
|
|
|
|
|
|
|
|
|
// 求单个数字的欧拉函数
|
|
|
|
|
int phi(int x) {
|
|
|
|
|
int res = x;
|
|
|
|
|
for (int i = 2; i <= x / i; i++)
|
|
|
|
|
if (x % i == 0) {
|
|
|
|
|
res = res / i * (i - 1);
|
|
|
|
|
while (x % i == 0) x /= i;
|
|
|
|
|
}
|
|
|
|
|
if (x > 1) res = res / x * (x - 1);
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 快速幂
|
|
|
|
|
int qmi(int a, int b, int p) {
|
|
|
|
|
int res = 1;
|
|
|
|
|
a %= p;
|
|
|
|
|
while (b) {
|
|
|
|
|
if (b & 1) res = res * a % p;
|
|
|
|
|
b >>= 1;
|
|
|
|
|
a = a * a % p;
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
signed main() {
|
|
|
|
|
int a, c;
|
|
|
|
|
cin >> a >> c;
|
|
|
|
|
int p = phi(c);
|
|
|
|
|
|
|
|
|
|
// 将非数字字符,比如空格读没
|
|
|
|
|
char ch;
|
|
|
|
|
ch = getchar();
|
|
|
|
|
while (ch < '0' || ch > '9') ch = getchar();
|
|
|
|
|
|
|
|
|
|
// 当是数字字符时,一直读入
|
|
|
|
|
int b = 0;
|
|
|
|
|
while (ch >= '0' && ch <= '9') {
|
|
|
|
|
b = b * 10 + ch - '0';
|
|
|
|
|
if (b >= p) // 检查b是否大于等于phi(c)
|
|
|
|
|
b = b % p + p;
|
|
|
|
|
// 继续读入下一个字符
|
|
|
|
|
ch = getchar();
|
|
|
|
|
}
|
|
|
|
|
printf("%lld\n", qmi(a, b, c)); // 按快速幂来计算就行了
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**[$HDU2837$ $Calculation$](https://acm.hdu.edu.cn/showproblem.php?pid=2837)**
|
|
|
|
|
|
|
|
|
|
**题意**:$f(0) = 1$ $and$ $0^0=1$. $f(n) = (n\%10)^{f(n/10)}$ 求$f(n)\%m$。
|
|
|
|
|
|
|
|
|
|
就递归加指数循环节,
|
|
|
|
|
$$\large f(n)\%m = (n\%10)^{f(n/10)\% \phi(m)+ \phi(m)}\%m$$
|
|
|
|
|
|
|
|
|
|
然后继续计算一下指数部分:
|
|
|
|
|
|
|
|
|
|
$f \large (n/10)\%\phi(m)=(n/10\%10)^{f(n/10/10)\%\phi(\phi(m))+\phi(\phi(m))}\%\phi(m)$
|
|
|
|
|
|
|
|
|
|
一层层递归,直到$n==0$的话,此时$0^0=1$,就返回$1\%$当前要$mod$的那个数了,
|
|
|
|
|
|
|
|
|
|
我们设当前$dfs$到的层中表达式为$f(x)$,当前的$\phi$为$\phi(y)$,
|
|
|
|
|
我们需要判断$f(x)$是不是大于$phi(y)$,如果大于则用扩展欧拉定理进行进步化化简,否则直接计算。
|
|
|
|
|
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
#define int long long
|
|
|
|
|
#define endl "\n"
|
|
|
|
|
|
|
|
|
|
// 求单个数字的欧拉函数
|
|
|
|
|
int phi(int x) {
|
|
|
|
|
int res = x;
|
|
|
|
|
for (int i = 2; i <= x / i; i++)
|
|
|
|
|
if (x % i == 0) {
|
|
|
|
|
res = res / i * (i - 1);
|
|
|
|
|
while (x % i == 0) x /= i;
|
|
|
|
|
}
|
|
|
|
|
if (x > 1) res = res / x * (x - 1);
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 快速幂
|
|
|
|
|
int qmi(int a, int b, int p) {
|
|
|
|
|
int res = 1;
|
|
|
|
|
a %= p;
|
|
|
|
|
while (b) {
|
|
|
|
|
if (b & 1) res = res * a % p;
|
|
|
|
|
b >>= 1;
|
|
|
|
|
a = a * a % p;
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// a^b 与 c 谁大谁小?
|
|
|
|
|
// 返回 a^x<=c的第一个a^x,其中x ∈ [1,b]
|
|
|
|
|
// 如果跑完b,还是 a^b <=c, 就返回 a^b
|
|
|
|
|
int check(int a, int b, int c) {
|
|
|
|
|
int res = 1;
|
|
|
|
|
while (b--) {
|
|
|
|
|
res *= a;
|
|
|
|
|
if (res >= c) return res;
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int dfs(int a, int c) {
|
|
|
|
|
if (a == 0) return 1;
|
|
|
|
|
int p = phi(c);
|
|
|
|
|
|
|
|
|
|
// f(n/10)
|
|
|
|
|
int x = dfs(a / 10, p);
|
|
|
|
|
int y = check(a % 10, x, c);
|
|
|
|
|
if (y >= c) {
|
|
|
|
|
int res = qmi(a % 10, x + p, c);
|
|
|
|
|
if (res == 0) res += c;
|
|
|
|
|
return res;
|
|
|
|
|
} else
|
|
|
|
|
return y;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
signed main() {
|
|
|
|
|
int T;
|
|
|
|
|
cin >> T;
|
|
|
|
|
while (T--) {
|
|
|
|
|
int a, c;
|
|
|
|
|
cin >> a >> c;
|
|
|
|
|
cout << dfs(a, c) % c << endl;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
> <font color='red' size=4><b>注:这个代码没看懂,$TODO$,待续</b></font>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[$HDU4335$ $What$ $is$ $N?$](https://acm.hdu.edu.cn/showproblem.php?pid=4335)
|
|
|
|
|
|
|
|
|
|
题意:给定$3$个整数$b,p,M$,其中$0 \leq b <p,1 \leq p \leq 10^5 $和$1 \leq M \leq 2^{64}-1$,求满足下面两个条件的$n$ 的个数。
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
**分析**:
|
|
|
|
|
由$$\large n ^{n! \% \phi(p)+\phi(p)} \% p \equiv b$$
|
|
|
|
|
|
|
|
|
|
所以这样就容易多了,注意有个特判。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BZOJ3884: 上帝与集合的正确用法
|
|
|
|
|
https://www.cnblogs.com/jiecaoer/p/11442358.html
|
|
|
|
|
|
|
|
|
|
TODO 挖坑等填
|
|
|
|
|
https://www.cnblogs.com/LMCC1108/p/11252888.html
|