You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
TODO
|
|
|
|
|
|
|
|
|
|
挖坑待填
|
|
|
|
|
|
|
|
|
|
https://blog.csdn.net/yingxue_cat/article/details/133648992
|
|
|
|
|
|
|
|
|
|
树上背包
|
|
|
|
|
发现这个也不会。枯。希望现学来得及吧。
|
|
|
|
|
|
|
|
|
|
P2014 [CTSC1997] 选课
|
|
|
|
|
虽然以前写过,但似乎是没咋看懂式子稀里糊涂敲上去的(?
|
|
|
|
|
啊啊啊以前好多这种稀里糊涂照着题解思路/老师代码贺上去的题,每当提起我都记得做过,每当考到就发现不会,深受其害/ll
|
|
|
|
|
|
|
|
|
|
这题是个森林,则对每棵树的根节点向 0
|
|
|
|
|
0
|
|
|
|
|
连边,使之变成一棵树。
|
|
|
|
|
设 fi,j,k
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
表示子树 i
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
的前 j
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
个儿子,已经选了 k
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
门课的最大值。注意:必须选点 i
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
那么 fnow,tot,j=max(fnow,tot,j,fnow,tot−1,j−k+fv,mxtot,k)
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
=
|
|
|
|
|
max
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
−
|
|
|
|
|
1
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
−
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
,
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
)
|
|
|
|
|
。同样注意 k
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
只能循环到 j−1
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
−
|
|
|
|
|
1
|
|
|
|
|
。
|
|
|
|
|
类似背包进行滚动数组优化。(似乎滚动了反而更好写(?)
|
|
|
|
|
也不知道自己到底会没会/kk
|
|
|
|
|
|
|
|
|
|
P4516 [JSOI2018] 潜入行动
|
|
|
|
|
题面看起来还挺套路,但我不会,树形 dp 是真忘光了啊啊啊啊啊怎么办
|
|
|
|
|
式子好长不想写...算了口胡一下吧。
|
|
|
|
|
设 dp[u][j][0/1][0/1]
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
/
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
/
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
表示子树 u
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
里放了 j
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
个,点 u
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
放了/没放,是否已经被监听。
|
|
|
|
|
于是滚动数组一下推出长下面这样的转移柿子↓
|
|
|
|
|
↓
|
|
|
|
|
|
|
|
|
|
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪dp[x][i+j][0][0]=∑dp[x][i][0][0]×dp[v][j][0][1]dp[x][i+j][1][0]=∑dp[x][i][1][0]×(dp[v][j][0][0]+dp[v][j][0][1])dp[x][i+j][0][1]=∑(dp[x][i][0][1]×(dp[v][j][0][1]+dp[v][j][1][1])+dp[x][i][0][0]×dp[v][j][1][1])dp[x][i+j][1][1]=∑(dp[x][i][1][0]×(dp[v][j][1][0]+dp[v][j][1][1])+dp[x][i][1][1]×(dp[v][j][0][0]+dp[v][j][0][1]+dp[v][j][1][0]+dp[v][j][1][1]))
|
|
|
|
|
{
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
=
|
|
|
|
|
∑
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
=
|
|
|
|
|
∑
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
=
|
|
|
|
|
∑
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
=
|
|
|
|
|
∑
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
×
|
|
|
|
|
(
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
0
|
|
|
|
|
]
|
|
|
|
|
+
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
[
|
|
|
|
|
1
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
卡 long long 空间,要强制类型转换。我不管,我胡了就是我写了!(确信
|
|
|
|
|
|
|
|
|
|
不知道啥题
|
|
|
|
|
OI wiki 为什么给我推黑题啊,不会/kk
|
|
|
|
|
所以写到这吧awa
|
|
|
|
|
|
|
|
|
|
树形 DP
|
|
|
|
|
范学长讲树上问题,顺路回来更新一波。
|
|
|
|
|
|
|
|
|
|
CF822F Madness
|
|
|
|
|
贪心题。胡了篇 lg 题解。
|
|
|
|
|
|
|
|
|
|
P2607 [ZJOI2008] 骑士
|
|
|
|
|
基环树上的 dp。第一次做这种题(?
|
|
|
|
|
对于每个基环树,dfs 找到环的那条边,对于这条边分别钦定 u
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
不选/v
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
不选,分别 dp 即可。
|
|
|
|
|
转移显然。
|
|
|
|
|
实现的时候写麻烦了,直接并查集判环就可以,不用 dfs。
|