|
|
|
|
## [$AcWing$ $173$. 矩阵距离](https://www.acwing.com/problem/content/175/)
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
给定一个 $N$ 行 $M$ 列的 $01$ 矩阵 $A$,$A[i][j]$ 与 $A[k][l]$ 之间的 **曼哈顿距离** 定义为:
|
|
|
|
|
$$\large dist(A[i][j],A[k][l])=|i−k|+|j−l|$$
|
|
|
|
|
|
|
|
|
|
输出一个 $N$ 行 $M$ 列的整数矩阵 $B$,其中:
|
|
|
|
|
$$\large B[i][j]=min_{1≤x≤N,1≤y≤M,A[x][y]=1}dist(A[i][j],A[x][y])$$
|
|
|
|
|
|
|
|
|
|
**输入格式**
|
|
|
|
|
第一行两个整数 $N,M$。
|
|
|
|
|
|
|
|
|
|
接下来一个 $N$ 行 $M$ 列的 $01$ 矩阵,数字之间没有空格。
|
|
|
|
|
|
|
|
|
|
**输出格式**
|
|
|
|
|
一个 $N$ 行 $M$ 列的矩阵 $B$,相邻两个整数之间用一个空格隔开。
|
|
|
|
|
|
|
|
|
|
**数据范围**
|
|
|
|
|
$1≤N,M≤1000$
|
|
|
|
|
|
|
|
|
|
**输入样例**:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
3 4
|
|
|
|
|
0001
|
|
|
|
|
0011
|
|
|
|
|
0110
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**输出样例**:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
3 2 1 0
|
|
|
|
|
2 1 0 0
|
|
|
|
|
1 0 0 1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 二、题意理解
|
|
|
|
|
<center><img src='https://img2022.cnblogs.com/blog/8562/202203/8562-20220302204104175-1618850253.png'></center>
|
|
|
|
|
|
|
|
|
|
<center><img src='https://img2022.cnblogs.com/blog/8562/202203/8562-20220302204116645-1432127892.png'></center>
|
|
|
|
|
|
|
|
|
|
<center><img src='https://img2022.cnblogs.com/blog/8562/202203/8562-20220302204120871-1855976424.png'></center>
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 三、实现代码
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
#define x first
|
|
|
|
|
#define y second
|
|
|
|
|
typedef pair<int, int> PII;
|
|
|
|
|
const int N = 1010, M = N * N;
|
|
|
|
|
|
|
|
|
|
int n, m;
|
|
|
|
|
char g[N][N];
|
|
|
|
|
PII q[M];
|
|
|
|
|
int dist[N][N];
|
|
|
|
|
|
|
|
|
|
int dx[] = {-1, 0, 1, 0}; // 上右下左
|
|
|
|
|
int dy[] = {0, 1, 0, -1}; // 上右下左
|
|
|
|
|
|
|
|
|
|
void bfs() {
|
|
|
|
|
memset(dist, -1, sizeof dist);
|
|
|
|
|
int hh = 0, tt = -1;
|
|
|
|
|
// 将所有位置是1的位置,也就是哈密尔顿距离为0的入队列
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
for (int j = 1; j <= m; j++)
|
|
|
|
|
if (g[i][j] == '1') {
|
|
|
|
|
dist[i][j] = 0; // 标识距离为0,一是为了显示最终的结果,二来也有防止走回头路的作用
|
|
|
|
|
q[++tt] = {i, j}; // 入队列
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (hh <= tt) {
|
|
|
|
|
PII t = q[hh++];
|
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
|
int x = t.x + dx[i], y = t.y + dy[i];
|
|
|
|
|
if (x < 1 || x > n || y < 1 || y > m) continue;
|
|
|
|
|
if (~dist[x][y]) continue;
|
|
|
|
|
dist[x][y] = dist[t.x][t.y] + 1;
|
|
|
|
|
q[++tt] = {x, y};
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
// 放过0行和0列,这个+1用的妙,一行行读入,每一行从下标1的列号开始
|
|
|
|
|
// 原理就是读入到 g[i]这一行数据的地址中,并且需要偏移一个位置的地址,联想一下 scanf("%d",&a);的含义进行记忆理解
|
|
|
|
|
for (int i = 1; i <= n; i++) cin >> g[i] + 1;
|
|
|
|
|
// 宽搜
|
|
|
|
|
bfs();
|
|
|
|
|
|
|
|
|
|
// 输出结果矩阵
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
for (int j = 1; j <= m; j++)
|
|
|
|
|
printf("%d ", dist[i][j]);
|
|
|
|
|
puts("");
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|