|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const double eps = 1e-8;
|
|
|
|
|
const int INF = 0x3f3f3f3f;
|
|
|
|
|
const int N = 1010, M = 5010;
|
|
|
|
|
int n, m;
|
|
|
|
|
int f[N], cnt[N];
|
|
|
|
|
double dist[N];
|
|
|
|
|
bool st[N];
|
|
|
|
|
|
|
|
|
|
// 邻接表
|
|
|
|
|
int idx, h[N], e[M], w[M], ne[M];
|
|
|
|
|
void add(int a, int b, int c) {
|
|
|
|
|
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool check(double mid) {
|
|
|
|
|
queue<int> q;
|
|
|
|
|
memset(cnt, 0, sizeof cnt);
|
|
|
|
|
memset(dist, 0x3f, sizeof dist);
|
|
|
|
|
memset(st, false, sizeof st);
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
q.push(i);
|
|
|
|
|
st[i] = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (q.size()) {
|
|
|
|
|
int u = q.front();
|
|
|
|
|
q.pop();
|
|
|
|
|
st[u] = 0;
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
// 最短路
|
|
|
|
|
if (dist[v] > dist[u] + w[i] * mid - f[u]) {
|
|
|
|
|
dist[v] = dist[u] + w[i] * mid - f[u];
|
|
|
|
|
// 判负环
|
|
|
|
|
cnt[v] = cnt[u] + 1;
|
|
|
|
|
if (cnt[v] >= n) return 1;
|
|
|
|
|
if (!st[v]) {
|
|
|
|
|
q.push(v);
|
|
|
|
|
st[v] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
int main() {
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
|
|
for (int i = 1; i <= n; i++) scanf("%d", &f[i]); // 每个点都有一个权值f[i]
|
|
|
|
|
|
|
|
|
|
// 初始化邻接表
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
int a, b, c;
|
|
|
|
|
while (m--) {
|
|
|
|
|
scanf("%d %d %d", &a, &b, &c);
|
|
|
|
|
add(a, b, c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 浮点数二分
|
|
|
|
|
double l = 0, r = INF;
|
|
|
|
|
while (r - l > eps) {
|
|
|
|
|
double mid = (l + r) / 2;
|
|
|
|
|
if (check(mid))
|
|
|
|
|
l = mid; // 存在负环时,mid再大一点,最终取得01分数规则的最大值
|
|
|
|
|
else
|
|
|
|
|
r = mid; // 不存在负环时,mid再小一点
|
|
|
|
|
}
|
|
|
|
|
printf("%.2lf\n", l);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|