You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
//计算2^100 %13的值
|
|
|
|
|
int fun1(int a, int p, int mod) {
|
|
|
|
|
//前提p是质数,a不是p的倍数,有费马小定理
|
|
|
|
|
int ans = pow(a, p % (mod - 1)); //利用费马小定理,降幂 p'= p % (mod - 1),然后再计算 pow(a,p'),这个就小多了
|
|
|
|
|
ans %= mod; //再最后模一下mod就可以了
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// fun2和fun3都会受到时间或者空间的限制,而fun1直接使用了费马小定理可以迅速的求取答案
|
|
|
|
|
int fun2(int a, int p, int mod) {
|
|
|
|
|
int ans = pow(a, p); //不管p多大,我就是个算~暴力!但问题是你不怕爆掉int上界?不会溢出?
|
|
|
|
|
ans %= mod; //最后取模
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int fun3(int a, int p, int mod) {
|
|
|
|
|
int ans = 1;
|
|
|
|
|
while (p--) { //既然怕爆int上界,那么就一步一取模,一步一计算。笨的要死,你不怕慢死啊:人家费马小定理只需要一步,你需要p步!而且,p还不小,慢的要死!
|
|
|
|
|
ans *= a;
|
|
|
|
|
ans %= mod;
|
|
|
|
|
}
|
|
|
|
|
ans %= mod;
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
for (int i = 1; i <= 100; i++) {
|
|
|
|
|
cout << fun1(2, i, 13) << endl;
|
|
|
|
|
cout << fun2(2, i, 13) << endl;
|
|
|
|
|
cout << fun3(2, i, 13) << endl;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|