You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 100010, M = 200010;
|
|
|
|
|
int depth[N], f[N][25];
|
|
|
|
|
int n, m;
|
|
|
|
|
int d[N]; // 差分数组
|
|
|
|
|
int ans; // 存答案
|
|
|
|
|
const int T = 17;
|
|
|
|
|
// 邻接表
|
|
|
|
|
int e[M], h[N], idx, ne[M];
|
|
|
|
|
void add(int a, int b) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
// 树上倍增
|
|
|
|
|
void bfs() {
|
|
|
|
|
queue<int> q;
|
|
|
|
|
q.push(1);
|
|
|
|
|
depth[1] = 1;
|
|
|
|
|
while (q.size()) {
|
|
|
|
|
int u = q.front();
|
|
|
|
|
q.pop();
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (!depth[v]) {
|
|
|
|
|
depth[v] = depth[u] + 1;
|
|
|
|
|
q.push(v);
|
|
|
|
|
f[v][0] = u;
|
|
|
|
|
for (int k = 1; k <= T; k++) f[v][k] = f[f[v][k - 1]][k - 1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 标准lca
|
|
|
|
|
int lca(int a, int b) {
|
|
|
|
|
if (depth[a] < depth[b]) swap(a, b);
|
|
|
|
|
for (int i = T; i >= 0; i--)
|
|
|
|
|
if (depth[f[a][i]] >= depth[b]) a = f[a][i];
|
|
|
|
|
if (a == b) return a;
|
|
|
|
|
for (int i = T; i >= 0; i--)
|
|
|
|
|
if (f[a][i] != f[b][i])
|
|
|
|
|
a = f[a][i], b = f[b][i];
|
|
|
|
|
return f[a][0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 差分数组还原
|
|
|
|
|
void dfs(int u, int fa) {
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
dfs(v, u);
|
|
|
|
|
d[u] += d[v];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
int a, b;
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
for (int i = 1; i < n; i++) { // n-1条边
|
|
|
|
|
scanf("%d %d", &a, &b);
|
|
|
|
|
add(a, b), add(b, a);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// lca的准备动作
|
|
|
|
|
bfs();
|
|
|
|
|
|
|
|
|
|
// 读入附加边
|
|
|
|
|
for (int i = 0; i < m; i++) {
|
|
|
|
|
scanf("%d %d", &a, &b);
|
|
|
|
|
// 树上差分
|
|
|
|
|
// d[a]的含义:从a->fa这边条,多了一个环
|
|
|
|
|
// d[b]的含义:从b->fb这边条,多了一个环
|
|
|
|
|
d[a]++, d[b]++;
|
|
|
|
|
int p = lca(a, b);
|
|
|
|
|
/*
|
|
|
|
|
Q:lca(a,b)为什么要减2?
|
|
|
|
|
A:边差分,每条边是下放到下面的那个点上,用点来表示这个边的。
|
|
|
|
|
其实,每个点表示的是它向上那条边被覆盖的次数,对于lca(a,b)而言,由于dfs统计进行前缀和汇总时,
|
|
|
|
|
是左子树+右子树这样的形式进行汇总的,也按同样逻辑处理就会多出2个,需要扣除掉。
|
|
|
|
|
*/
|
|
|
|
|
d[p] -= 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 差分数组求前缀和
|
|
|
|
|
dfs(1, 0);
|
|
|
|
|
|
|
|
|
|
// Q:为什么要从2开始?
|
|
|
|
|
// A:因为1是根,1是没有边的,边是向上的,从2开始才有边
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
|
if (d[i] == 0) ans += m;
|
|
|
|
|
if (d[i] == 1) ans += 1;
|
|
|
|
|
}
|
|
|
|
|
// 输出
|
|
|
|
|
printf("%d\n", ans);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|