You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
##[$AcWing$ $379$ 捉迷藏](https://www.acwing.com/problem/content/description/381/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
$Vani$ 和 $cl2$ 在一片树林里捉迷藏。
|
|
|
|
|
|
|
|
|
|
这片树林里有 $N$ 座房子,$M$ 条有向道路,组成了一张 **有向无环图($DAG$)**。
|
|
|
|
|
|
|
|
|
|
树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔。
|
|
|
|
|
|
|
|
|
|
如果从房子 $A$ 沿着路走下去能够到达 $B$,那么在 $A$ 和 $B$ 里的人是能够相互望见的。
|
|
|
|
|
|
|
|
|
|
现在 $cl2$ 要在这 $N$ 座房子里选择 $K$ 座作为藏身点,同时 $Vani$ 也专挑 $cl2$ 作为藏身点的房子进去寻找,为了避免被 $Vani$ 看见,$cl2$ 要求这 $K$ 个藏身点的任意两个之间都没有路径相连。
|
|
|
|
|
|
|
|
|
|
为了让 $Vani$ 更难找到自己,$cl2$ 想知道最多能选出多少个藏身点。
|
|
|
|
|
|
|
|
|
|
**输入格式**
|
|
|
|
|
输入数据的第一行是两个整数 $N$ 和 $M$。
|
|
|
|
|
|
|
|
|
|
接下来 $M$ 行,每行两个整数 $x,y$,表示一条从 $x$ 到 $y$ 的有向道路。
|
|
|
|
|
|
|
|
|
|
**输出格式**
|
|
|
|
|
输出一个整数,表示最多能选取的藏身点个数。
|
|
|
|
|
|
|
|
|
|
**数据范围**
|
|
|
|
|
$N≤200,M≤30000$
|
|
|
|
|
**输入样例**:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
7 5
|
|
|
|
|
1 2
|
|
|
|
|
3 2
|
|
|
|
|
2 4
|
|
|
|
|
4 5
|
|
|
|
|
4 6
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
输出样例:
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
3
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 二、解题思路
|
|
|
|
|
**[最小路径覆盖 与 最大独立点集](https://www.cnblogs.com/littlehb/p/17600731.html)**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 三、实现代码
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 210, M = 30010;
|
|
|
|
|
int n, m;
|
|
|
|
|
int g[N][N], st[N];
|
|
|
|
|
int match[N];
|
|
|
|
|
|
|
|
|
|
int dfs(int x) {
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
if (g[x][i] && !st[i]) {
|
|
|
|
|
st[i] = 1;
|
|
|
|
|
int t = match[i];
|
|
|
|
|
if (t == -1 || dfs(t)) {
|
|
|
|
|
match[i] = x;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
memset(match, -1, sizeof match);
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
|
|
|
|
|
|
|
while (m--) {
|
|
|
|
|
int a, b;
|
|
|
|
|
scanf("%d %d", &a, &b);
|
|
|
|
|
g[a][b] = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// floyd求传递闭包
|
|
|
|
|
for (int k = 1; k <= n; k++)
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
for (int j = 1; j <= n; j++)
|
|
|
|
|
g[i][j] |= g[i][k] & g[k][j];
|
|
|
|
|
|
|
|
|
|
int res = 0;
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
memset(st, 0, sizeof st);
|
|
|
|
|
if (dfs(i)) res++;
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n", n - res);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|