|
|
|
|
## [$NC106112$ $Street$ $Directions$](https://www.luogu.com.cn/problem/UVA610)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 一、题目描述
|
|
|
|
|
现在有一个联通的无向图,我们要把整个图改造为有向图,在保证强连通的情况下使得双向边尽可能少。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 二、解题思路
|
|
|
|
|
- ① 桥不能被改成单向边,因为会使得某一个方向断开
|
|
|
|
|
- ② 除了桥之外的边会构成若干个双连通图,那么我们按照$dfs$ 的顺序把这里面的边改成单向边,那么这个双连通图就会变成一个强连通图。
|
|
|
|
|
|
|
|
|
|
**总结**
|
|
|
|
|
- 桥,输出两条边
|
|
|
|
|
- 不是桥,输出一条边,成对变换的另一个不能输出需要标识
|
|
|
|
|
|
|
|
|
|
### 三、$Code$
|
|
|
|
|
```cpp {.line-numbers}
|
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
const int N = 1010, M = N << 2;
|
|
|
|
|
|
|
|
|
|
int ts;
|
|
|
|
|
int dfn[N], low[N];
|
|
|
|
|
|
|
|
|
|
// 链式前向星
|
|
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int out[M]; // 是不是成对变换输出过
|
|
|
|
|
void tarjan(int u, int fa) {
|
|
|
|
|
dfn[u] = low[u] = ++ts;
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int v = e[i];
|
|
|
|
|
if (v == fa) continue;
|
|
|
|
|
|
|
|
|
|
if (out[i]) continue; // 对边已经输出过,那么,这条反边不能输出。因为如果是割边的话,两条边在u->v时就都已经输出完了
|
|
|
|
|
out[i] = out[i ^ 1] = 1; // 标识成对变换输出过
|
|
|
|
|
printf("%d %d\n", u, v); // 输出u->v,同时,需要检查 v->u是桥的话,还输出v->u
|
|
|
|
|
|
|
|
|
|
if (!dfn[v]) {
|
|
|
|
|
tarjan(v, u);
|
|
|
|
|
low[u] = min(low[u], low[v]);
|
|
|
|
|
if (dfn[u] < low[v]) // 割边
|
|
|
|
|
printf("%d %d\n", v, u); // 割边需要输出两条
|
|
|
|
|
} else
|
|
|
|
|
low[u] = min(low[u], dfn[v]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
|
|
freopen("UVA610.in", "r", stdin);
|
|
|
|
|
#endif
|
|
|
|
|
int n, m, cas = 0;
|
|
|
|
|
while (scanf("%d%d", &n, &m), n + m) {
|
|
|
|
|
idx = ts = 0;
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
memset(dfn, 0, sizeof(dfn));
|
|
|
|
|
memset(low, 0, sizeof(low)); // Tips:有些人的代码,low也是可以不用清空的
|
|
|
|
|
memset(out, 0, sizeof out);
|
|
|
|
|
|
|
|
|
|
while (m--) {
|
|
|
|
|
int a, b;
|
|
|
|
|
scanf("%d%d", &a, &b);
|
|
|
|
|
add(a, b), add(b, a);
|
|
|
|
|
}
|
|
|
|
|
printf("%d\n\n", ++cas);
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (!dfn[i]) tarjan(i, -1);
|
|
|
|
|
puts("#");
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
```
|