You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 5010;
|
|
|
|
|
|
|
|
|
|
int primes[N], cnt;
|
|
|
|
|
bool st[N];
|
|
|
|
|
|
|
|
|
|
// 欧拉筛
|
|
|
|
|
void get_primes(int n) {
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
|
if (!st[i]) primes[cnt++] = i;
|
|
|
|
|
for (int j = 0; primes[j] <= n / i; j++) {
|
|
|
|
|
st[primes[j] * i] = true;
|
|
|
|
|
if (i % primes[j] == 0) break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 高精乘低精
|
|
|
|
|
void mul(int a[], int &al, int b) {
|
|
|
|
|
int t = 0;
|
|
|
|
|
for (int i = 1; i <= al; i++) {
|
|
|
|
|
t += a[i] * b;
|
|
|
|
|
a[i] = t % 10;
|
|
|
|
|
t /= 10;
|
|
|
|
|
}
|
|
|
|
|
while (t) {
|
|
|
|
|
a[++al] = t % 10;
|
|
|
|
|
t /= 10;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 功能:n的阶乘中包含的质因子p的个数
|
|
|
|
|
* @param n n的阶乘
|
|
|
|
|
* @param p 质因子p
|
|
|
|
|
* @return 有多少个
|
|
|
|
|
*/
|
|
|
|
|
int get(int n, int p) {
|
|
|
|
|
int cnt = 0;
|
|
|
|
|
while (n) { // p^1的个数,p^2的个数,p^3的个数...
|
|
|
|
|
cnt += n / p;
|
|
|
|
|
n /= p;
|
|
|
|
|
}
|
|
|
|
|
return cnt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// C(a,b)的结果,高精度保存到c数组,同时,返回c数组的长度len
|
|
|
|
|
void C(int a, int b, int c[], int &cl) {
|
|
|
|
|
// 乘法的基数是1
|
|
|
|
|
c[1] = 1, cl = 1; // 由于高精度数组中只有一位,是1,所以长度也是1
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < cnt; i++) { // 枚举区间内所有质数
|
|
|
|
|
int p = primes[i];
|
|
|
|
|
/*
|
|
|
|
|
C(a,b)=a!/(b! * (a-b)!)
|
|
|
|
|
a!中有多少个质数因子p
|
|
|
|
|
减去(a-b)!的多少个质数因子p,
|
|
|
|
|
再减去b!的质数因子p的个数,就是总个数
|
|
|
|
|
s记录了p这个质数因子出现的次数
|
|
|
|
|
*/
|
|
|
|
|
int s = get(a, p) - get(b, p) - get(a - b, p);
|
|
|
|
|
while (s--) mul(c, cl, p); // 不断的乘p,结果保存到数组c中。len将带回c的有效长度
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int a, b;
|
|
|
|
|
int c[N], cl;
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
cin >> a >> b;
|
|
|
|
|
// 筛质数
|
|
|
|
|
get_primes(N - 1);
|
|
|
|
|
|
|
|
|
|
// 计算组合数
|
|
|
|
|
C(a, b, c, cl);
|
|
|
|
|
|
|
|
|
|
// 输出高精度结果
|
|
|
|
|
for (int i = cl; i >= 1; i--) printf("%d", c[i]);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|