You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
|
using namespace std;
|
|
|
|
|
const int N = 1e5 + 10, M = N << 1;
|
|
|
|
|
// AcWing 848. 有向图的拓扑序列
|
|
|
|
|
|
|
|
|
|
//邻接表
|
|
|
|
|
int e[M], h[N], idx, ne[M];
|
|
|
|
|
void add(int a, int b) {
|
|
|
|
|
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
0代表未访问
|
|
|
|
|
1代表是这一阶段正在访问的(这一阶段指的是两个元素在同一个递归中)
|
|
|
|
|
2代表访问完毕
|
|
|
|
|
*/
|
|
|
|
|
int color[N];
|
|
|
|
|
|
|
|
|
|
vector<int> res; //拓扑序结果数组
|
|
|
|
|
|
|
|
|
|
bool dfs(int u) {
|
|
|
|
|
color[u] = 1;
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
|
|
int j = e[i];
|
|
|
|
|
if (color[j] == 1) return true;
|
|
|
|
|
if (color[j] == 0 && dfs(j)) return true;
|
|
|
|
|
}
|
|
|
|
|
color[u] = 2;
|
|
|
|
|
//利用递归的规则,在把自己为出发点的一组节点跑完,才把自己加入路径,它的孩子在它之前已经加入了路径
|
|
|
|
|
res.push_back(u);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
int n, m;
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
|
|
int a, b;
|
|
|
|
|
cin >> a >> b;
|
|
|
|
|
add(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool flag = false;
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
|
|
if (!color[i]) {
|
|
|
|
|
flag = dfs(i); //枚举每个点,如果没有访问过,就作为起点搜索
|
|
|
|
|
if (flag) break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (flag)
|
|
|
|
|
puts("-1");
|
|
|
|
|
else {
|
|
|
|
|
reverse(res.begin(), res.end());
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < res.size(); i++)
|
|
|
|
|
printf("%d%c", res[i], i == res.size() - 1 ? '\n' : ' ');
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
无环测试用例:
|
|
|
|
|
3 3
|
|
|
|
|
1 2
|
|
|
|
|
2 3
|
|
|
|
|
1 3
|
|
|
|
|
答案:
|
|
|
|
|
1 2 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
有环测试用例:
|
|
|
|
|
3 3
|
|
|
|
|
1 2
|
|
|
|
|
2 3
|
|
|
|
|
3 1
|
|
|
|
|
答案:应该输出有环,-1
|
|
|
|
|
实际: 1 2 3
|
|
|
|
|
这是有问题的~,需要新方法判环~
|
|
|
|
|
*/
|