You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
3.6 KiB
127 lines
3.6 KiB
2 years ago
|
##[$POJ$ $2155$ $Matrix$](http://poj.org/problem?id=2155)
|
||
|
|
||
|
|
||
|
### 一、题意描述
|
||
|
楼教主出的题,是二维树状数组非常好的题,还结合了开关问题(开关变化的次数如果为偶数,状态不变,奇数状态相反)。
|
||
|
|
||
|
题意就是给了一个二维的坐标平面,**每个点初始值都是$0$**,然后给一个矩形的区域,对该区域的点的状态进行**反转**。然后在中间插有查询,查该点的状态。
|
||
|
|
||
|
其实,还是对反转次数的一个研究,这里为了能快速的查找一个点的反转次数,加上又是二维,且有区间修改,所以选择二维树状数组进行处理,整个二维数组记录 **前缀和$sum$** 的就是反转的次数。
|
||
|
|
||
|
每反转一次,就对整个矩形区间进行修改,反转次数加$1$,最终查询的时候就是查一共反转了多少次,记得取余$2$,如果是偶数,就不变,是奇数,就变$1$。
|
||
|
|
||
|
### 二、一维数组实现
|
||
|
```cpp {.line-numbers}
|
||
|
#include <bits/stdc++.h>
|
||
|
|
||
|
using namespace std;
|
||
|
const int N = 11;
|
||
|
|
||
|
int a[N] = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||
|
|
||
|
//树状数组模板
|
||
|
int tr[N];
|
||
|
#define lowbit(x) (x & -x)
|
||
|
void add(int x, int c) {
|
||
|
for (int i = x; i <= N; i += lowbit(i)) tr[i] += c;
|
||
|
}
|
||
|
int sum(int x) {
|
||
|
int res = 0;
|
||
|
for (int i = x; i; i -= lowbit(i)) res += tr[i];
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
void print() {
|
||
|
for (int i = 1; i < N; i++)
|
||
|
cout << sum(i) % 2 << " ";
|
||
|
cout << "\n";
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
//记录基数组到树状数组中
|
||
|
for (int i = 1; i < N; i++) add(i, a[i]);
|
||
|
|
||
|
// 将2-4取反
|
||
|
add(2, 1), add(4 + 1, -1);
|
||
|
print();
|
||
|
|
||
|
//将2-4再取一次反
|
||
|
add(2, 1), add(4 + 1, -1);
|
||
|
print();
|
||
|
|
||
|
//将3-4再取一次反
|
||
|
add(3, 1), add(4 + 1, -1);
|
||
|
print();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
/*
|
||
|
输出:
|
||
|
1 0 0 0 1 1 1 1 1 1
|
||
|
1 1 1 1 1 1 1 1 1 1
|
||
|
1 1 0 0 1 1 1 1 1 1
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
拓展到二维就涉及了一下容斥原理,先看一下下图。
|
||
|
<center><img src='https://ask.qcloudimg.com/http-save/yehe-2579985/4lxr4xqj4r.png?imageView2/2/w/1620'></center>
|
||
|
|
||
|
注意处理二维树状数组区间更新的时候,假设给的矩形对角线的点为$(x_1,y_1),(x_2,y_2)$。那么更新的时候是:
|
||
|
$$\large add(x_1,y_1,v)+add(x_1,y_2+1,-v)+add(x_2,y_1,-v)+add(x_2+1,y_2+1,v)$$
|
||
|
|
||
|
### 三、二维代码
|
||
|
```cpp {.line-numbers}
|
||
|
#include <iostream>
|
||
|
#include <cstdio>
|
||
|
#include <cstring>
|
||
|
const int N = 1010;
|
||
|
using namespace std;
|
||
|
|
||
|
int n, m;
|
||
|
string str;
|
||
|
int c[N][N];
|
||
|
|
||
|
#define lowbit(x) (x & -x)
|
||
|
void add(int x, int y, int v) {
|
||
|
for (int i = x; i < N; i += lowbit(i))
|
||
|
for (int j = y; j < N; j += lowbit(j))
|
||
|
c[i][j] += v;
|
||
|
}
|
||
|
|
||
|
int sum(int x, int y) {
|
||
|
int res = 0;
|
||
|
for (int i = x; i; i -= lowbit(i))
|
||
|
for (int j = y; j; j -= lowbit(j))
|
||
|
res += c[i][j];
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
// 加快读入
|
||
|
ios::sync_with_stdio(false), cin.tie(0);
|
||
|
int T;
|
||
|
cin >> T;
|
||
|
while (T--) {
|
||
|
memset(c, 0, sizeof(c));
|
||
|
cin >> n >> m;
|
||
|
while (m--) {
|
||
|
cin >> str;
|
||
|
if (str[0] == 'C') {
|
||
|
int x1, y1, x2, y2;
|
||
|
cin >> x1 >> y1 >> x2 >> y2;
|
||
|
// 二维差分
|
||
|
add(x1, y1, 1);
|
||
|
add(x2 + 1, y1, -1);
|
||
|
add(x1, y2 + 1, -1);
|
||
|
add(x2 + 1, y2 + 1, 1);
|
||
|
} else {
|
||
|
int x, y;
|
||
|
cin >> x >> y;
|
||
|
printf("%d\n", sum(x, y) % 2);
|
||
|
}
|
||
|
}
|
||
|
if (T) puts("");
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
```
|