You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

47 lines
1.4 KiB

2 years ago
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/f20cc4e72ce1658bbb6abd961ba124d6.jpg)
**结论**
$tan \alpha=\frac{1}{2},tan \beta=\frac{1}{3},\alpha+\beta=45^{\circ}$
利用结论:
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/075c27430cd8d1931068d43ef1c2b5fa.jpg)
设$\angle BAE=\angle \alpha,\angle FAD=\angle \beta$
$\because BE=2,AB=4$
$\large \therefore \frac{BE}{AB}=\frac{2}{4}=\frac{1}{2}=tan \alpha$
双$\because \alpha+ \beta=45^{\circ}$
根据结论:$\frac{DF}{AD}=\frac{1}{3} $
$\therefore DF=2$
**证明**
绘制右侧的图形,$\angle \alpha +\beta=45^{\circ}$
取角分线上任意一点$P$,向$AB,AC$引垂线,构造直角三角形,同时,延长$NP$交$AB$与$M$。
这样就有了好多个直角三角形,计算起来就容易了:
$\because tan\alpha=\frac{1}{2}$
设$EP=x$,则$AE=2x$
$\because \angle ANM$是引垂线引出的直角三角形,$\angle NAB=45^{\circ}$
$\therefore \angle AMN=45^{\circ}$
$\therefore EM=EP=x$
$PM=\sqrt{2}x,AM=3x$
再利用等腰直角三角形的边长关系,得到
$AN=MN$
$\because 2 AN^2=(3x)^2$
$AN=\sqrt{\frac{(3x)^2*2}{2*2}}=\frac{3\sqrt{2}}{2}x$
$\therefore PN=\frac{3\sqrt{2}}{2}x-\sqrt{2}x=\frac{\sqrt{2}}{2}x$
$\therefore tan \beta=\frac{PN}{AN}=\frac{1}{3}$
**证毕**