You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

32 lines
1.2 KiB

2 years ago
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/02405c1efce546e23aeb1f12aa7c75c8.png)
有公共端点的三条线段,方法就是找出两条线段所在三角形做$60^{\circ}$旋转。
如下图:
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/27eb9137fe1ce6e8f070d4070688ec83.png)
$\because \triangle AB'P' \cong \triangle ABP$
$\therefore \angle PAP'=60 ^{\circ},AP=AP'$
$\therefore \triangle AP'P$是等边三角形
$\therefore AP=PP'$
问题中要求解的$AP+BP+PC$也就成功转化为
$$PP'+B'P'+PC$$
通过图形可知,图中$B'C$就是三点共线时的最小值!
下面开始求解$B'C$长度。
求边形一般用勾股定理,构造直角三角形:从$B'$向$BC$边引垂线,交$BC$延长线于$H$。
$\because \triangle AB'B$是等边三角形
$AB=B'B=2$ 可以理解为旋转了$60^{\circ}$
$\because \angle ABB'=60 ^{\circ}$
$\therefore \angle B'BH=30^{\circ}$
$\therefore B'H=1,BH=\sqrt{3}$
$\therefore B'C=\sqrt{(\sqrt{3}+2)^2+1^2}=\sqrt{8+4\sqrt{3}}$
复合二次根式 需要用配方法化简:
$=\sqrt{8+2\sqrt{12}}=\sqrt{\sqrt{6}^2+2\sqrt{12}+\sqrt{2}^2}=\sqrt{(\sqrt{6}+\sqrt{2})^2}=\sqrt{6}+\sqrt{2}$