You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
32 lines
1.2 KiB
32 lines
1.2 KiB
2 years ago
|

|
||
|
|
||
|
有公共端点的三条线段,方法就是找出两条线段所在三角形做$60^{\circ}$旋转。
|
||
|
如下图:
|
||
|
|
||
|

|
||
|
|
||
|
$\because \triangle AB'P' \cong \triangle ABP$
|
||
|
$\therefore \angle PAP'=60 ^{\circ},AP=AP'$
|
||
|
$\therefore \triangle AP'P$是等边三角形
|
||
|
|
||
|
$\therefore AP=PP'$
|
||
|
问题中要求解的$AP+BP+PC$也就成功转化为
|
||
|
$$PP'+B'P'+PC$$
|
||
|
通过图形可知,图中$B'C$就是三点共线时的最小值!
|
||
|
|
||
|
下面开始求解$B'C$长度。
|
||
|
求边形一般用勾股定理,构造直角三角形:从$B'$向$BC$边引垂线,交$BC$延长线于$H$。
|
||
|
$\because \triangle AB'B$是等边三角形
|
||
|
$AB=B'B=2$ 可以理解为旋转了$60^{\circ}$
|
||
|
|
||
|
$\because \angle ABB'=60 ^{\circ}$
|
||
|
$\therefore \angle B'BH=30^{\circ}$
|
||
|
$\therefore B'H=1,BH=\sqrt{3}$
|
||
|
|
||
|
$\therefore B'C=\sqrt{(\sqrt{3}+2)^2+1^2}=\sqrt{8+4\sqrt{3}}$
|
||
|
|
||
|
复合二次根式 需要用配方法化简:
|
||
|
|
||
|
$=\sqrt{8+2\sqrt{12}}=\sqrt{\sqrt{6}^2+2\sqrt{12}+\sqrt{2}^2}=\sqrt{(\sqrt{6}+\sqrt{2})^2}=\sqrt{6}+\sqrt{2}$
|
||
|
|