You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|

|
|
|
|
|
|
|
|
|
|
#### 数形结合很重要!
|
|
|
|
|
|
|
|
|
|
看到是方程时,可以联想到它的方程图形:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\large \left\{\begin{matrix}
|
|
|
|
|
y=(x-a)(x-b) & \\
|
|
|
|
|
y=1 &
|
|
|
|
|
\end{matrix}\right.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
分别画出这两个方程的图像,它们的交点就是方程组的解。
|
|
|
|
|
|
|
|
|
|
如图可以看出抛物线与直线方程的交点,就是$x_1,x_2$的位置。
|
|
|
|
|
|
|
|
|
|
那么$a,b$和$x_1,x_2$是什么关系呢?
|
|
|
|
|
其实$a,b$就是抛物线与$x$轴的交点坐标!因为此时$x=a,y=0$或$x=b,y=0$,同时由于题目中给出了条件$a<b$,所以最终的答案就是:
|
|
|
|
|
|
|
|
|
|
$$\large x_1<a<b<x_2$$
|