You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
37 lines
1.2 KiB
37 lines
1.2 KiB
2 years ago
|

|
||
|
|
||
|
#### 第一步:先求与直线相交交点的范围
|
||
|
$$
|
||
|
\left\{\begin{matrix}
|
||
|
y=\frac{1}{2}x+\frac{1}{2} & \\
|
||
|
y=ax^2-x+1 &
|
||
|
\end{matrix}\right.
|
||
|
$$
|
||
|
即$\frac{1}{2}x+\frac{1}{2}=ax^2-x+1$
|
||
|
$ax^2-\frac{3}{2}x+\frac{1}{2}=0$
|
||
|
$\because 有两个交点$
|
||
|
$\therefore \triangle>0$
|
||
|
即$\frac{9}{4}-2a>0$
|
||
|
$\therefore a<\frac{9}{8}$
|
||
|
|
||
|
#### 第二步:与线段$AB$交点范围
|
||
|
- $a>0$
|
||
|
开口向上,模拟画出一个与线段$AB$有两个交点的抛物线,发现此抛物线当$x_1=-1,x_2=1$时,对应的$y_1,y_2$肯定是大于直线方程上的$0,1$
|
||
|
即 $$
|
||
|
\large \left\{\begin{matrix}
|
||
|
a+1+1>=0& \\
|
||
|
a-1+1>=1&
|
||
|
\end{matrix}\right.
|
||
|
$$
|
||
|
解得$\frac{9}{8}>a>=1$
|
||
|
- $a<0$
|
||
|
开口向下,模拟画出一个与线段$AB$有两个交点的抛物线,发现此抛物线当$x_1=-1,x_2=1$时,对应的$y_1,y_2$肯定是小于直线方程上的$0,1$
|
||
|
即 $$
|
||
|
\large \left\{\begin{matrix}
|
||
|
a+1+1<=0& \\
|
||
|
a-1+1<=1&
|
||
|
\end{matrix}\right.
|
||
|
$$
|
||
|
解得$a<=-2$
|
||
|
|
||
|
所以答案是两部分$\frac{9}{8}>a>=1$或$a<=-2$
|