You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
19 KiB

{"embedding_dim": 1024, "data": [{"__id__": "chunk-4a0e35cee101ddc2ad73de221349ac1a", "__created_at__": 1751960974, "content": "氧化铁和硝酸的反应方程式1\n\n氢气与氧气燃烧的方程式", "full_doc_id": "doc-4a0e35cee101ddc2ad73de221349ac1a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "chunk-985d57ce5151ad231023134ce6b73ab6", "__created_at__": 1751961022, "content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } { \\stackrel { \\Delta } { = } } F e \\left( N O _ { 3 } \\right) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 } \\uparrow\n$$\nFormat: latex\n\nMathematical Analysis: ```json\n{\n \"detailed_description\": \"The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)", "full_doc_id": "chunk-985d57ce5151ad231023134ce6b73ab6", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "chunk-2d91748ceef7dce1c0469421d68a189a", "__created_at__": 1751961080, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .\n$$\nFormat: latex\n\nMathematical Analysis: The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents a balanced chemical reaction where hydrogen gas (H₂) reacts with oxygen gas (O₂) to form water (H₂O). Here is the mathematical analysis:\n\n- **Mathematical Meaning and Interpretation**: This is a stoichiometric equation where the coefficients (2, 1, 2) indicate the molar ratios of reactants and products. It adheres to the law of conservation of mass, as the number of atoms for each element is equal on both sides.\n\n- **Variables and Definitions**: \n - H₂: Diatomic hydrogen molecule (reactant).\n - O₂: Diatomic oxygen molecule (reactant).\n - H₂O: Water molecule (product).\n\n- **Mathematical Operations**: The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. The '+' denotes combination, and '=' denotes transformation.\n\n- **Application Domain**: This is a fundamental reaction in chemistry, particularly in combustion, energy production (e.g., fuel cells), and thermodynamics.\n\n- **Physical Significance**: The reaction is highly exothermic, releasing energy, and is central to processes like respiration and rocket propulsion.\n\n- **Relationship to Other Concepts**: In the given context, it parallels the reaction of iron oxide with nitric acid, as both are examples of redox reactions. However, this one is a synthesis (combination) reaction.\n\n- **Practical Applications**: Used in fuel cells, hydrogen-based energy systems, and understanding combustion dynamics.\n\n- **Broader Framework**: Part of foundational chemistry, illustrating stoichiometry, reaction balancing, and energy transformations.", "full_doc_id": "chunk-2d91748ceef7dce1c0469421d68a189a", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "fuBBPSBRCT1Ze0K9BXOTvG+Y1rvcWzO9kVUwPR29KjwjjQ09hgkVvZHaDb3Rym69dfLcPI9GL7pbDyE81AZzu3qzPryI8W68jbLQvIB0oDrc1tW7Xy2jPEK7zjqsuIO7ghxGPJ26B729QTk5WOIdvQA8VT3as426iN2nPEExq7ul6KC9uzd+vQ9EDD0Vj5E8Ll4GPPDfIr3VfE+9syGLPPKHyDz+tne93G/6PK9vKrr8mHU7mOF/OzDLPb3Ubc68Rl4uvOD+krzy/aQ853thvNxbMz33vga9zHojvY/f0zxJi7G9p0ERvaUUjr2cYRe9hBeAOzthSD0snrq8OVLHvLGh87waGks9Oj4APZnhfzw8Yci8uGwQvSQ6+bzSSoY8DusbvVCN3bx1Ad67gqZpO8FfuzxKmrK8fFtkOU+WgjwDAv27LECEO3HsgLyI8W68GKRuvMx6ozw/E6m3n9gJPYw89LxVPz69WOIdO0YG1DuEoaO8aMhzu97vkTqvg3G8lirZvJ26hz3YQnc8uyh9vHRouTx8c4q8p5/HPORd37yMLfO8ogWNvV23xrwVd+u7C1e9PIQ6yLzjZoQ8ERgfPJOW+jwjjQ090CwEuvSRA72IZ8u8OM3puv0dUzxkwpe8O00BPcx6o7xO6n09wW48u4l2TDxLqTO9vlC6PDJfHL0MVz29pPznvI9a9rwO6xu9MVAbvR29qjs85qU8Bxs5vMr1xbvsPEM9Mdo+PfDfor2T6Y48cTs2PdvCjj10aLm8BiD/PKUUjr00fZ48xrlBvH5lnzz1Pu87t2JVvKzby7z/J467Cr4YPVlswbzfElo9YEulvIB0oDqQVbC8OVJHvPIR7Ly8rdq8cewAPPY5Kb26FDY8+/9QvYwoLbtGbS89oLFivamuyLxh0AI9NiVEusSMvrxfsgC9syGLvGnXdDzRLIQ9pYHFPF2oxTwhDXa8mlIWu7/yg7xgS6U8ErFDveRdXz28rdo8Sb16vEE2cbzCfT28iewoPWvhL7wVRSK9oTZAvGSHKT2dfxk9ZP2FvbfnsjxZLI28ROhRvEZtrzxOYNq8ZxuIPEtCWLyzq668Ba6BOvHuIz0YgSa7NAfCvD71JjpVP768EVMNvKzbS717cwq9GIGmuhuuKTcksFU9nZPgPJBGL73qzws8dM8UvUO2CDwRJyA8NH0evBy9Kj39k689os9kvVfTnDxJizE90tlvPFwy6TyZV9y84BLaPF5Qaz2fGL68OvSQO5FVML3Qp6Y8KoV+PGvSrjuZfgO9i5ROPCns2byGWMo8GAvKPIqFzbzv5Gg97vwOPYnsqDy5exG9e8I/vb0yOD0ifoy7qUftvE/0uDytYKk9JauPvCbOV7vHPh87FY8RvekPQL0rgDi7kGl3PSSw1bwsnjo9RNlQvJfD/bvJ5sS7qIsAPfeDmLtN1rY8pO3mOyqFfjpV8Ag8UQM6PIyjT7vPIsk57lpFvKefxzxKmrI92ZULPa1gqT0M3Jo7ZP0FPRvpl7ywknI8gYOhvfrciL1fPCS9ZxuIvHs4HD2LHvK8eEYHvPdIKj2SczK5M4JkvU7lNz0Jw168BXMTvpyrBr1r0i48+FcrPYoKK7zycwE9EjtnPIlxBr2j7Wa7wR8HvFG0BL1BNvG8Tce1vCn72rzYHy89AUvWPDfWDjxD2VA9obsdPSIr+Luhz2S8eZW8u0u4ND0h+S47vtrdvBNK6DxkjG87m4RfPMZbi7wVd+u8mkOVvYXibbuHU4Q5QCIqvBVUo7v/Jw68RoF2O955tTmzqy482KlSvEofkD3Wd4k9rWXvvJ0JPTvFIJ28dxDfPHqzvjyTlvo8NAfCvP0dU7x+ZZ+7zZ3rvNtMMr3Q8RU9IggwvUGszTzOIkk8cSy1OlThh7uccBg99SqoPEmLMb1nPlA82B8vvHXelTxAIiq7Ca8XOyFvC7vU8is9eUYHvffDTDooYjY9ylwhPSv2lDysx4S8kGl3PXxHHb00gmS8jBksPAa9gr0pcbe8tETTO6gVpLtAJ/A8vTK4vKzbyzzLXCE8Y+4EvTrIIzvgIVs+q73JO9gfLzv54c68YVomPFqKQ737ifQ6ixksPc6s7LygNsC86HYbvQUMOLoSNqE6+WvyOzLpPzt+4ME8Br0CuzlDxjsurTs9cKdXvIhnS7mS/dW68e6jPKWBxTrpmWO9lzSUPK5vKr2D3BE9In4MPWDVSL0pEwE8A2nYPHJPfbt8W+S7lAzXOybO1zyBl2g7KGI2vZUWkj3LphC9r7mZNw3cmrxhlZS98WSAvJdIWzzGLx47i1SavA76nLvxeEc9f+/CvMQRnLyIAHC8Br0CPC4jmLzmk4e8ziLJO4gA8Lwq+9q7DjULveh2Gz2g54q8zHojvHs4HD01FkO7PWsDvfyELrv9tvc6hMTrvLueWT33gxg9XbdGPIw8dD0r9hS9RXL1PH6gDT0SNqE7V9McPTLpvzzyEey8QDbxO+stQr1fLaO8qV+TvDAyGbtilZQ8XzwkOmjXdDtZ9mS8tM72vCfdWD3EEZy8tk4OPXxzijwe26y8jBmsvKefxzzS6HC8TUyTvDQHQr0O6xs9F60TPab3ITztxua3n9gJvdPocD34Vys8hOuSO0CdTDtTwwW8WfGeutQtmrzIUmY8UXmWunopm7yhNkA8JkS0PH7gwbzK9UU8KhOBvAtIPD1bAKC8P04XvN3gELwhHPc74Jz9PGJpJ71mL086xZu/PH2RjDy8N/48BO61vPuJ9Lw/jsu8wBCGPKCsHD1Y4p05TNt8PZBVMDxxOza7R/IMvf4Yjb2VoDU8d4Y7vMlh57wRJ6A8QnuaOmHQgrw2jJ88KezZvGvhLz1cI2g8bw6zvAA3Dz0K0l+9CvkGPQnS37uBl2i8KezZOzLaPrz/GA08nZPgPL1Gfz3tS8S8Hb2qPDzmpTvcb/o6UAM6PaA2QD3kXd8834i2vJ2iYbxSwwW9AMEyveA5gTyT+I88YvNKPZSRtLyDteq8lRtYvKszpj18TGM8vstcOrl7Ebz0Gyc952caPQ7rmzwRJyC7F/zIvAi0XT39hC697cbmuiEc9z2h9gu9laC1vECdTD0Ndb+8zLWRPS1PBT1O+f48Y4zvvBSAED1Tw4U8VT++PETFCT07YUi9xCXjvDJkYrxIAQ69xEwKPK+5GbsD3zS6zg4CvfnhTr1pOYo7QWwZvQUR/ryj2R89XKhFPVSXmLzs7Q07XzwkPVBqFb1Dtog8KXE3vA7rG70p55M8xAIbPDFQG70hklO9MMu9u2KkFbz2w8y8aE3RPNqzjTzsPMM8zZ1rPX3gQTztS8Q8iADwO/0d07xMUdk8UGqVPJjh/zxZLA09dnc6PE5blDyTlvq8TuW3OybO1zzbTDI7CdJfvE3b/Ly8rdo8rurMOwcqOj0dBxq7olTCO9JPTLxae0I7VsSbu8ZqDL2WtHy8JroQPYcYljvCLgi8AdCzvRuuKbuzIYs8Mto+PN6N/Lwp+9q8mOF/u/FkgDygseK86Q/AuzhDRjxX2GK7nQk9vM2JJLtO5be8/qIwvYhnSzwLzRk9ADcPu/yYdbwgUQk90DFKPPF4Rz1In3g7Q7YIvNVoiLzPmCW94UiCu03WNj1CMSs8ROhRO0upszxG1Ao8fVaePHhGh7zITSC82bhTvXgu4bwSYg69BQy4vHXyXLwlq4+88BqRPIYJFTyI3Se9WgCgu0X30ry7ipK8Z+AZvMpcobvWd4k6v+nePHiVPDzVi9A8mus6vZc0FL2DoSO9CuFgvc6sbDzOIsm8zbWROgrS37mZzTi60EBLvVsU57zgnP27PSGUvG4OMzsh+a68IW8LPPbDzLyxAwk8AeR6vA7rGz1selS9IW8LveK1ub17wr89TVFZvPM4kz1Jvfo84Jz9vJB4+DsY6IE7v+lePKG7nTyIYoU8NyXEvMnmRLuDK0e9gb4PvThDRjy8Rn88veOCPWfgGT3HPp88QJiGvEXo0blOWxS93xLauwigljzqmeM70EBLPB5CCD2wuZm87vwOvR7bLD25gFc8Ba6Buo3BUb1t/7E8H1GJOw+EwLxkh6m8emSJuRVoarwTz0W994OYvGWbcDzB+N885DoXvHNZuLy5e5E8HcyrPMumED2FvyW9BSB/u+AS2rxcqEW7iADwvcnXwzs3r+e8uYBXu6VyxLgYvBQ9uPYzvZUb2DxBRfK8boQPvfKHSDxhbm293wPZPHJKt7wpdv27qzOmu7EDibk9IRQ8a+EvPM7TE7twQPw7vLzbvJWRNDtlDAe73G/6ONRtTjv5zQe9jq0Kvcd5Dbd4hjs9mM24PAnSX7w1FkM7iYVNPV1ZED0QLGY9TtY2uy6tO7xgSyU6s0RTPHCn1zyfnRu8Bhu5u/wd0zvNiSQ8Ww+hvBI2Ib3OIkm9a/X2vKvMyrkzmgq9jtDSvAtIPD3FWws9zqxsPHtzCrqug3G9Yt8DvU7lt7wdVk887vyOvVXwiDwTSui8N9YOvWlNUTu13Xc8SzNXvNo9sTyc+rs84Jc3vRKxw7z9hC49zv8AOvL9JDpllqo74A2UvJL9VTw0fZ68rFEou88dg7wa2pa7Ww8hPFwyabvU8qs8d4Y7PHHsAL33XPG8rm8qPEO2iLy/AQU7saHzvGc+UL0Qk0G9d/yXPLW6r7zxeMc89EcUPdJezTw6PoA7J93YvCliNjzosQk7ezgcvA76nLulIw+9o+1mPW4i+jwlWPu6ylyhPU3q/bzxeMe8LAUWPONmBL0rIgI7kwxXvTrrazvglzc8vCO3vE9+3Dzyc4G8SzPXvInsqLyCK0c8AUaQvArh4DzjKxY7t+cyPfMvbjxj7gS92B8vPVhswTtcSg+9A980ulj25DxG4wu8d/wXu0An8LzkdYU8FWhqvSQXsbzmkwc88WQAPLAX0DqdouG8Gp+oPJhvAryu+U27qzMmvJpSFjyhRUE8eikbvJGHebxnPlC7ESegPf+xMb2wF1A97N4MveG6f71mqvG8eAsZvLKwdDxX05y8+3UtvFOrXzjfiLa8tT8NPAiglrw1FkM9YeRJvFCWAjymGuo8Bf02PfeDmLwQGB+9EJNBPTaMnzwY6AE90l5NO0G7zjyudPC7dRkEPK3qTD39CQw9CKCWO0CdzLw0fZ49FlQjuqFFQbs8+uw82JWLu/dNcLxt/zG5eqQ9vCMIMLkB5Ho9AUYQPd+c/Tnc5Va8J7oQvFS6YD2a3Lm9E89FPYMXAL16s747c9RavILNkL1OhwE9aMOtvBqfqLwPRAw8bjF7vLW6r7zXhgq5J8kRvM2JJLwjjY28RGP0PC9VYb0ksFU9GPeCuw41Cz1s8LA8YmknvLGNLDz/1Pk8H1GJvJl+g71JJNY8rXTwPP87VTyVoDW9XDLpvBEYnzxE2dA7tk6OPIXi7TsGllu9bGYNPbhskLvtwSA8v8YWPcU0ZD30DKY8UqtfudPVq7ugkIU8kEXZvFuhU7ylpa87MTLqvONykjo9a8A98xLNPKYA1Tu+bke9qAudu2V/hLv6Mr+8t6amPNPRcbw7DOG7zxQZvTHijDtiba68qAudvXNnlzyWYJq8QM3zPCKbmjzrk3u5in04PRCcgDylpww9hb4CPK0gx7zhaae8JKV8vQW88rxOEZI8QHlcPI3jpbrtTAm7IZSMvZe54jzB1LS8aInmvETfyTytyHW8lgwDPHvedLzhv5u78741vXmHib3GQbC8SUzFvF1YBLxODVg92vFjOry70DtRzuo6ylOGvQQJ/DtW4MC9+jI/u8U99rsQmqM8RTpvPPd6l7x42yC82/jxPF1UyrkIcyM9WDvmu1+1hrzZ7o+8yJxVvBa22zteW9i7z2gwvaPyODy+bsc8rBuWuv+hlzwwhYo9dyTwPKsZOTvFOiI882oevaasvbysxSE9BLXkOzhS3Dy9FvY8zQ2LvTXzfL33JCM8qQ5xvMecVb31caw8UXPFu/9NgL18keu68renvP2U8rwpt9K8u2N/PKtt0Dzo3TC8wCObPJT/Xbwwg627Kr5gvPoyvzxxCpW8q23QPG4BKjxxYIk5FxAKPbdSjzspYzu74L2+vBIAkTzrl7U88AB3PGC6tzxU2TI8IkPJPTCFCrzjcLW8qAsdvLlZHT0FaNs8FmLEvDGKO7wkoqg8itUJPWV/hL2RpDi8Af+Zu33rGTxjdDw8bwEqPZJMZz3MYSK9iB5ZPQww/Dxb+aQ8o0ZQPGtHpT3KqnG9PWvAPIJWOL3a9Z28PRmGvZt3ITxp45S8cVxPu3IPxrzb+PG8mGkFPfYg6Tyg5Jw8/DlNvZpz57tK/7u7dHACO2YuQbwJfA69XlvYO+qXNbyugQM8Lsx8PbkFBr2koXW9njEmPcGAnbueM4M8BxtSvQZoW7osxe48ezqAPdLOHbvs8to8JVFlvGQigryP7BC9KhgPvCoS+Lsknu48mcQqPWeC2LwM3GS8dHACPBsj1zzeAzq9Sqfqu/Nm5DwuKAg9oDi0PDHeUr0knm48LiTOvB1+/DzMsX86fkicuclPTLrfsvY8LMmovHFcTztpjaC8RIsyvePIBr2XETS8TmUpvetDnjxvAaq8rc6MvYyExruP6jO9ou2HPB4x8zvkd8O8OxAbPLq0Qr3aRXu87UqsvAQPEz141BI9hbjrPNfnAb10aus7nHr1PGJtLj1C2hi9oDg0vZP8iTtuAao7zhDfvNz+iD3r8tq6G3duuwnSAj3LAkM9hsMzvSdYczz9mCy9Jqm2vLTsoTvu/aK7eYPPOx3WTb3VMFG9RD4pupdlSzq2TlU9Nvc2vDhWFr2XvRw9b62SPdnuDz3F5oo86DHIvKA6kbxjyFM7Zc/huqVYJjyZGMI8V4/9PDb5EzyIykG9bJ0Zu9J6Bj2gk1k8fkgcu8n3erygkIW71+pVvH1BDr0wg628++F7PQYUxLt42yC8LtKTPQbALLzXN189CB8MPf6aiT12cfm8QM3zPLTsIb2ot4W95taivOR3Q7zVhOi8N6otPPzltbyl+UY999CLO7mvkb2KKaE8mcf+uzqzGL6FuGu9mGmFuxp0mjsbz788N6qtPOFpp7jAeQ+95M+Uu92raL0nBFy9bENrvYgeWbyN5YI8KBEBPBrIMbq3+j28QM3zupL4zzzLrqu87UqsvHMTAL0CWj89YxzrvG8BqrwBqwI6VC3KvI/qszzVMFE8DTaTvGQns73cqJS8FVs2O7NAOT1FOu+77UosPQ7nLDmcfq+8/D0HPeR3wztkzI08edfmu9DDVb0y5eC68FhIvW9Vwbxnglg9oDg0PHs6gL2WYBq9aIlmvPNmZLteB8E8ZSezO5nEKr2WXj073rYwvCE+mD1l05u8ovK4OKzFITrNtbm8n4xLPGYuwbveW4u8KWUYvZYKpjzDM5S8yvu0PA07xLy8Zzk9FgpzPdXelrzwXAK7PsblO89qDT2DC4y9F7qVvIO1lzyzQpa9CSLgvFY4kjyjniE8BAn8u4/m+TzwBDE9d3xBPBx7KDzT0fE6NktOPgGrAj3GPfY8wM+Du+uZErxOuUC9USELPeFrhDz1HZU7VuDAvIJWuLyte2y83gM6PZ6Fvbt4K368jYtUPVLOarsRnXe7lrJUPeR3w7x+ROI8dMI8vfyRHrwzPbI8tUdHva/VmjsQ8Jc8c2eXvB83irxPGKC5DTYTugvV1rz9lPK7BA02vbXzrzwacGA9kZ8HvZ4xJjy2nxg9QNEtvVFzxbw0mFe8j+qzPGBmoLwWtls97lE6O1U4krsOj1u96TjWvJay1DsiRwM8oOScPPUZ2zuAUYe8j5LiPD3GZTwadBq90BsnvPgtDr2IHtk8tfMvvMr7tLssywW8zbU5vXAIOLz8PQe9kkznPCJDybxqPN08pU1ePbSU0LhlKZA9EELSvGk5iT26CNq8B8e6u/Vt8jwQlmk9VYWbux+JxDrNtxa90MPVu3kxlbyKKaE8UyiZPP5ElTxguje8EJbpPJJQIT0M3OQ8vRb2ug02k7tAzfO86YxtPEj087sNNhO9MYq7PBGhMbu7EyK9jNwXPaE/wrzJp506wYAdO5cRNDy06Gc9hRIau1xUSr1t9mG7o0oKveffDTyUVy+9qr6TPObZ9jsQnAA7OP7EO7mvEbzNEN879R0VPZx69bzyt6c8cxMAveEVkLyPPku8HzeKupWyVDzaRfu8URt0PTeqrTwvf/O85tYiPRVbNjwED5O8/OW1vLq0wjx4Kgc993oXPcuq8TzEin88KWM7O0DN8zx9QQ69h2+cvKsZuTtKq6S87EbyO3mDTzzzEk28e46XvOIYZLwECfy6PWtAvIwyDL1QyxY9vGe5vD3DEbs4/kS9xZAWvGroRb1PbLe8d3zBvCsYj7zK+zS982qeO6+CejxZQnQ8NfCoPCzJKD2oB+M8XVgEPf/zUb1J+oq7LiTOunEPRrwmVZ88fZeCO1jnzjzBgB27TF6bPFpNvLssdZG8IkNJPEXm17rfCsg6HX78O6A6kbwVr009/0ujvUfxH7xQxIg9//PRvOG/Gz3/n7o9wCObvFbgwLzNDYs9GsgxveffDT1IoNw8WUauPEtXDbxJp2q8lxE0PT99Fjw4qq07U36NvEZAhr1WNFi8ezZGvJ4tbLvZlj48t6LsPEdFt7y6CFq91zdfvOIYZL15Lzi9vsYYPaOeoTxl05u6msf+vIGqzzzJ93o8fpyzvGcuwbz3JKM7Alo/Pdyk2jtvqVi9bvobvYrYXTx2HWI7fem8u1ulDT1FPim8IZSMPF0AMz1vqdg8QizTPK14GD1smzw8O2QyPOuXtbxjdLw8lmCaPbtgq7zV3Dm7sC5jvSROkTwVWza8Z9wGPf/3i7zmKjo9GMMAPcOJCL1b9eq63wrIPMHQ+jx9lSU8klAhvdDD1bxE30m77UwJPSljuzzZlr68lKtGve+pi73Pxw+80s6dPANhTbxKqyQ7b1VBvEMz4bx+nhC9/D0Hu54xJr17jhe78Qs/Pe2ewzydgAw9ZCICvSzJqLzZ7g89Z9qpvGBpdDx4Kgc6d3xBvLxpFrwvK1w9JwgWO+5RuryMMgw8W028vLmvkbyj7n484mx7vKdfNLxY6wi7kfFBPLI7CL0Ic6O637J2vP+fOrtgZiC9r38mva0gR70whQq95tLoPIyIALuGa2K8wXzjvDtksryMhEa9so1CvEbqkbzLAkM9w4kIOQfHOj25XPG8DDS2vLf8GrwWYkQ9mXCTvGUpEL1ODVg90srjvAH/mbja9R08BLmevMF8Y71RH668ZXvKvOPETLvcpNq882qePCYBiD1ODVi6vGmWO/qNZLxqlos9YGl0vNmYG72SUCG982ZkPV2o4TuxMh08MTakPIopIb0h6KM8fD1UPOYsF7zLsIg84WuEuiOkhbpyY9284RHWOT8glDwLL4U7DeCePPoyPz11HWK893i6uxa2W7w4VpY8eCgqvLf6vbzSdsw8w4kIPUHTCr2JeAc8/UBbvP3sw7yAo8E8Jf1NPXRq6ztfYma81YiiPDqxuzzpkKe4iiVnvfjT37xxCDi799CLu2QgJb0dhBO7M5WDO75ux7xkIKU7K24DPVuh0zu3piY8EEngPKdaAz2MhEa8rc6MvNpF+731xcO8UyY8PKNKijzyX9a8MIOtPN4DurvzvjU8KLdSuoYXyzxODVg7XlvYux+JxDySUKG6eS+4uy7M/DzfuI28HYI2vR1+fDsuJE677fYUvF2sGz0axHc8v3XVPEdHlLySUCE7KWWYvH6Y+TzZ7g+8j+ozvXAEfjgN4B69VuDAPBNQbj2cenU8U9kyPRDwlzxVhZu8y7CIvKLtBzu+bsc8tfMvPFz8+LxWNFi7nocaPQbALL0Q8Be9noW9vDPs7rsCrla84WmnvJL4TzxA0S27OQVTPKWlr7oyOIE70R77u5YKJr1CgOq8iikhvAh2d70iQ0k8fem8u0mkFr0T/FY8WZpFvBx7KL353ic9Fgrzu2xHpTwcJ5G9IOTpPJ6FPT1E44O8OKwKPbI7iDuGF0s8j+qzPCxxV7zwWMg8qAudu4vY3Tyh66q9wSjMPJzSRjy/yWy6tp+YvUyyMj3Qw1W7O2D4PFBzRbykofW8C9kQu0wKhL3GmYG9d9BYPFc/ILzfsvY56JAnvM21ubzm1qK6FQNlPK0kgbyos0u8wSwGPBx9BT3/oZc9jeWCPCm3Uj3mggs9AE/3PGfaqbwsywW9fUGOvDimc7sSTRo8/OcSPC7M/LxJ+C27w4mIvDTsbr2y4dm8GBW7O05lqbyA+xI8y7CIvLmttLsEYc08mMBwPE8YoD3ViKI82p3MvLKNwjuFaA4982ZkPYl4hzx7Nka90B2EPK10Xr0AT3e8g7WXPO1MCbz/TYC8paUvvDy8Azw0mFe9VYWbPbWbXrxqPF076DHIuRYK87uXZUs9KbuMvDAvFj3VhOi8suFZPRhtDL0QSWC9gKPBvAotqDwufB89BLkevQhzozyDCa88v8nsvG32YbtjHGu7IT6YPIBLcDraSTW8J1jzu50qGDx2IRw9M5HJvJay1DzsRvK7//eLPLWbXjvm0mg9xI45O9Bxmzxs84093KgUPSljuzzdq+g8fD3UPJRXL7wNjAe9dMSZuzXz/Dx9l4I8RebXvBvPvzx+nLM88xLNO+jdsDy6tMK75COsPCX9zTzxs+08DTaTvRIAkT04qq26vhqwvMpTBr33JgC9xIr/vMsCQ72yNfG7gla4vGJvi7wfiUS7R6Dcu1aMqTzkzxS9zLH/vOgxSD0yOIG9Do9bPfqGVr207CE9WJUUPRfDgLpKqyS8+Cd3PAFVjjvqPJC8QzNhPXcqBzzNtTk8BWhbPCwdwLwwLxa9J1ytPPO+tbyy4dk8ZCClvDLl4Ds/ck49Do/bvIp5/jt96Tw9ZSP5u57djjxIooQ8nCBePWl9EL0AyIU6R1iBvJkDE72oo8e7a1BYPaZoLD25WQC8nYQLvYBpObxkshQ7U8yCu8ZhiDoJCTg9h2sqvE1T1jtxF645HnBCO7iJ2bx+fMe8DnciPHFwGbwfq906c1LJO/03JTxBKVi8aNqhO7+e2Ly4pyk6rNYWvc+E6r31KnK9NR0qO8sdHDqmtlW9N62KuyZyM72WvbU89Z2HPPpZG71WN3e8Y1mpvcJt+jwvCKu898m6vKpCEL186MC8fUEsvKJAnzrXLfC8UHtjPQRNJDzkROA7cwSgOjR2lb0mbg28HDWnvbux5rx1P7u7ns6OPNga4rzXoIW7KZrAu81nHz3AqRo95ETgPDMS6Lw6J2e89txIOrNEgT17Nuq8oyJPPNjfxrsk3qw8Sg35u2jpCTxt/gg65F4KPSGjkTvfkw48Jvv3O9ZLQLxGXKe9BeGqPPdwTzx4Z8i8EgcDPeg8FL3SMhu9MiX2vLClOLsSRkS9Va6yvH7K8LuXFqG82BpivFNzF736aAO9rRGyujcKHDz0SEI67J88vSQ3mLwMmZg7f4eJO19Eqru4Shg9/KMevF/N7jzOSc+8ofpBPA5s4DzBi0q9EKf7u53StLzK4gC9u7FmPN3/hzz23Ei8ux3gPNg4Mj0FL9S8mqonvHfeA70qhzK83LmqPEJkc7yKpsU8MpgLu6Lc8Tv/y6u9PBTZOW6Wtbv9LOM8nCBePcbu8jxaw7E8SCtJvfMNJz3AqZq8OoBSPN5Ji7ydK6A9E1GGvZIBojx3LC29kqSQvJXQwzxQLTo8BpMBPdolJD3kFAe9Oc77u8c00DxllMQ8e1CUuj8Mjb3vjK682gdUOpU4l7zHUiC6debPu0+Zs7umD8G5rF/bvEqAjj3w0gu86NCauzuLFD00xD68xFpsvW4qvLw/43q8fN1+PJqqpz1O59w8X39FPAJgsrxH5eu84sqDvT5aNry2Q/y8TV4YPQG5HT3fL+G8nxgSvWVVAzun8XA8HINQu3P5XbyGMA+7wZaMPCiPfjxyqzS9MzA4PcZH3jo/7rw8h3qSPANNpLto6Qk8riCaPJOVKDznMdK8KpYaOY4J7rwh5vi8pCLPOzZYxbzK4oA80gVjvLf10jrsRlG8KI9+vW2Lcz2F5gs72mA/vV9ABL1K7Ie85+MovFEP6jvvjK66oo5IPbPrlT1NrEG9EpRtO5dkyjuDUgU9xmEIvMHGZTzw0ou8qyTAO9ZLwLzOSU88JnIzvahKXLy8Yz09JwY6PCetzrsHw9o7qFWevCp88Ltt/gg98HmgvALpdj2CpFQ8LBs5vIRDHb0ppYK80N1VPeX2tjt7+067btFQPOHOqT3Bi8o6aceTPFAtOrw/DA28iLnTu27+CLkfXbQ6/sBpPJ1b+Txv0dA8LIMMvRgCWL3gOqO8VpDiPAtPFT2nZAa86gD0vEvKkTxi1Aq8OOxLvNS3uTyWKa+82sw4PQWIPz0/DA08YhNMPR4iGb2iBQQ8F8MWvR/FB726OzC90EGDvXC+wrxzBCA7OJ6iPDKJIz0IYiO9Mn5hPTieIj0sEPe8DDHFu4VDnbvo0Bq+ofabvUgryTx8mpe8saGSPDYZhDtsaoK8HmwcvZvwBDyry1S7RlynvN2mHL1hYfW8xGWuO3SN5Dwwke+8JGdxvO6BbDxGXKc91y3wvNZLQL2wpTg6fI9VPfpZG72zG++7pMnjPECgEzrhzik9J1TjvGljZjmldxS9AmAyvUI0Gjx8mpc8WdY/O7RhTD37SrO60XHcvI2PET2SqDY72N9GPSMs1jwSBwO9zyv/PAtE07r/JJe8c1JJPKwkwDzVaRC8Y2iRPJo+rjkppQK9Z89fvF6S0zu0JrG8U8yCO9eRHTuYUTw9jSc+vJIx+zu1Ios8NR2qO1aQ4jxh1Io8/8uruzJOiL33yTo8aGPmPH+3YjxhbLe8dDR5PZi5Dz3+N6W8zFxdPPe++LzS1Qk9ZDvZvCmlAr33jh89QaCTvSQZSDzwIDU8Iu0Uuwx/bj1CZPM7dw7dux5sHLxe6768w+APPOkeRD4VjKE8+R4AvKEFBL31+hg9mEb6vBvcu7rSi4Y7BE0kvWWUxLwlJIq9uygiPKZoLD3tnzw8JDeYvM/7JT2GB3281v0WPXhnSD14tXG7e62lPCnzK72v82E8hSXNu0nsB71jWSm9FnmTPM6iujyh9hu9LGnivMxc3bwM2Fm86rJKPMxcXb3qAPQ7lbJzPEgrSb3sRtG8EbK9PIbM4bwVFWa8mj6uvHCDpzuc0jS752xtPFgvKzx2Ies86DwUvfcX5LwF4So8lSkvvcjmJj2d0rS8TpmzvLRhzDxeRCq9TpmzvA8eNz0yToi5I0aAu+sLtjy4pyk8XjnougtPFb3/2pO8cReuPBccgrywVw+9ujswPDsyqTzGR948Z8/fPLZDfL0+AUs94icVPdeghTwSn6+8PXiGPYDCpDwCYDK87J88vWX8l7yyOb86K+AdvbOOhLqdK6A8ytMYvMrIVj0pmkA91Le5O+JXbrxzUsm7iU1aPNct8Lz7aAM8W3WIPMiC+Ttgf8W8FiAouwQvVLudOgi9/PyJvKKOyLub5cK7fi6ePQObTbtC2647ZpTEO4uIdTxStv47EAupvcerizxOAQc8oVMtPQqdvjySASI8bLSFvMf5tDzRI7M7p/FwPcDktbxwvkI8SoAOPbuxZrvcuao8HiIZvVQHHj133gO9Gu9JOynzqzwPGpG8i+wivQGu27xxyYQ9Otm9PP2QEDze4Tc9v7iCPLQmsbzSfB48x/WOvTRr07xtlrW8kjH7vMu1yLzYODI9UHvju43OUr14wDO9k+6TvCC2H7oFL9S70DZBPVAieL2AaTk8xzTQvN5NsbvNDrQ50DbBvKR7Orwl2gY80jKbvKKOSL3gOiM92wdUPD5atjz0oa09BYg/PRTayjz+Z/68gv0/PXjAM7ycx/K82TQMupPj0bwXW0M7Hsktva5qnTxMbYC7uZSbu9N8Hj1oY+a7BYi/PDoyKT1I8C08Y/V7PSHmeDx+5Jq8oKFWPSb797wl2oa8dI3kPT6o37ycIN68glarPcmNO72GMA89cWXXOqreYjwWxzw6yiwEvbiJWT0iWQ49mqYBvKr4DL24iVm9M2vTO0jwLbyHayo8accTPThFtzzAqRq9PXiGvfz8iTtueGW8b9FQvRZuUT2aM+y4zaI6PSvVW70Ku448SXnyvLo3Cr0ien+8bLQFvaJAHz1I8C08dDT5PKdkBr2vDQy8TazBuTCcsbw04g67BycIvE/yHju39VI9dpimu7f1Urug7386ZQsAvG2Lc7sDm0099UScvI9tmz3u9AE9CM6cu9jfxrwftp+7g1KFPKmFdzyTima81F5OPAmwzDzAPSG8MokjvDiTYD2OCe48Jvv3O92b2jtVrjK9SuyHvASIv7v3cM88CHGLupOVKL0lZ3G9mozXPLZDfDtycJk6XbCjvCBdNL3+GVW7NHYVvPICZb1iumC9FIFfvHZ6Vj1jTmc6L+pave4+hTx/t+K8wx9RPUfl6zwlwNw8lSkvvUeXwrz7P/E8Iu0UPEMWyjz3cE+8k+PROwISCbx7+047syaxPVgvK7wtwk29hJFGOTetCjxKGDu8DoaKPVjLfTpMbYC88w2nvPEcD722Q3y847BZvGJsNzpLv0+9kBQwO7JEgbx7+868TFNWvUndnzthMZw8fxDOPLBMzTygSOs7v1CvvDu77TlRlY283fRFPTIwOLyKpkW8DRP1PNVpkLw4Rbc7gktpPDuLFL3t+Ce9/PyJPETIoDtVrjK9rCRAvW2WNb3V8lQ8vwIGvTCcsbx+PYa9OidnPT/j+rvXhtu847DZvNEYcT1Il8I6+lkbPe+MLj32vni8cGVXvP43pTwtg4y5946fPHF/ATy7gY27n84OvPB5oLwCXIw76N8CvTam7jtKgA49iHoSPHe1cbzfOiM8gGk5vEY+17zSi4a8S8oRPc4Kjjxm/Be9/hlVPCXLnru6z7Y7aChLPX0jXDwdjpK8N60KvYd6Ej07FFm88CA1u5Pj0bu/98O8rbjGPKdKXL3qAPS8WhwdPCsQd7xE1wi95zHSPONxmDtkC4A9ekl4PIn0br2KpkU89hdkuzwuA7ui3PG9nHnJPAXhKrvHYYg8jXVnu9l+Dz0LTxW9KUyXvAZq77yZ+NC85n97PG1IDDsK9ik74wlFvdsSFjzI5qY89jU0vRyD0LzPhOq7iMSVO4xFjrxhE8w8EQspvGgoy7xKv888Va4yvWNoEb1+1bK7Q2TzvFrDsTsOdyK7ZKdSvEmENDv90/e69oPdu7xjPT13LK08TgEHPNolJL1vgye8NGtTPfK0uzyaM2y8CP51vHMEID2vmnY8wOQ1vVywI72IEj+9gMKkvMRabDwoQVU9h7nTPMxnnzrrZCG9LXQkPdy1BLwa70m8OJPgvHC+wjsS+Jo8QjQaPGQAPrxdU5K9C39uOzj3jTwjLNa8FnkTPPZEHDuXbwy9hEOdvMkhwjzxHA892xIWOyBdND0gtp+80x+NPLUTIzz7aAM8pXeUvHXmT7wE8JK7qTfOvDLXTDz0oa27fsrwOq7DCL33IqY8kZ10PEZcJz1VrrK8kfZfvAd1Mb3Ds1e8V6oMvZa9NbsM8gM7FTO2PFdCuTy0YUw5fejAO+JXbry4WYA7S2bkOywbOTwKBRI9unZLPe0zQ7oyfmE9WH1UPMg0UDwBB0e947BZvQLp9jx33gO9TKF/PN2b2ruE6jE9wYtKPQzyAz0gtp+9O9WXvF6SU7zRIzO8/EqzPNklpDwjRoA95tjmOw53ojxhbLe8NMS+PJH2X71MFBW6CpL8PG3+CD0+qN87ojVdve8V8zwQWVK93kmLPDXPADx4wDO91kvAu2xbGjzV8tQ7FIHfvFQWBrtixSI9nxgSveeKvbzxHI+86HcvO/7eOb1IooQ9VmCJO1dCOTwoApS8zaK6uu1Rk7ydW3k8hUOdOmLFIrz1KvK8Plo2vITqMb0dcEI9sODTvKdkBjyXFqE8WC8rvLxjPT1bdYg7yY27u3EXrrwRsj08Y05nPDFOCD2xVw88p0pcPXbIfzymaCw9kRAKPYuxhzxNU1a8huYLPMUMQz0vugE7RCEMvH0jXD21EyO71kvAuwoFEryDUgU9hXP2PDJ+4TxYfdQ8RCGMPDTEPrziYjA71F5OPan8Mr3EdBY9MokjvYZ+uLwGdbE7OoBSvfOwFbwG3QS9GGYFvQ8etzvRIzO8ZVUDveZ/e7vvjK48LXQkPM2iujrAqRo9M+IOvCvVWz0jN5i9e1Q6PamFdz07FNm8uaMDu1MaLD2oo0c3DYqwujXEPj2RT0s8I9PqO16dFb1PmbM6GbCIvN5Ji7y+vKi8rmodPWyL8zzI22Q9aW4oPf/Lq7woApQ874yuPO8V8zwwq5m7"}